1 2 3 4 5 6 7 8 9 10 11 12 13 | CvM.normal.regression(y, x, fit.intercept = TRUE)
CvM.gamma.regression(y, x, fit, fit.intercept = TRUE, link = "log")
CvM.logistic.regression(y, x, fit.intercept = TRUE)
CvM.laplace.regression(y, x, fit.intercept = TRUE)
CvM.weibull.regression(y, x, fit.intercept = TRUE)
CvM.extremevalue.regression(y, x, fit.intercept = TRUE)
CvM.exp.regression(y, x, fit, fit.intercept = TRUE, link = "log")
|
y |
response variable |
x |
explanatory variables |
parameter |
estimates of regression parameters |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | n = 500
p = 3
beta = c(1,2,3)
x = rnorm(n*(p))
#x = c(rep(1,n),x)
x = matrix(x,n,p)
# OLS regression
mean = x%*%(beta)
#apply the link to get the mean
#generate data with that mean,
sd = 2
y =rnorm(n,mean=mean,sd=sd)
estimate.normal.regression(x=x,y=y,fit.intercept=TRUE)
CvM.normal.regression(x=x,y=y,fit.intercept=TRUE) # mean(cvm)=.06
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.