Description Usage Arguments Value Examples
View source: R/evaluate_partition_semisup.R
Evaluate number of clusters, ARI, AUC difference, c-index and CPE, with Supervised, unsupervised and Semisupervised reference partitions
1 2 3 4 5 6 7 8 9 | evaluate_partition_semisup(
partition,
ref.unsup,
ref.sup,
ref.semisup,
data.surv,
TMIN = 2,
TMAX = 5
)
|
partition |
Vector containing cluster ids of the partition to evaluate. |
ref.unsup |
Vector: Unsupervised reference partition (i.e. data structure). |
ref.sup |
Vector: Supervised reference partition (i.e. using survival parameters). |
ref.semisup |
Vector: Semisupervised reference partition (i.e. combining both). |
data.surv |
dataframe with variables |
TMIN |
time point to start analyzing AUC. |
TMAX |
time point to analyze AUC. |
a list of named performances values
1 2 3 4 5 6 7 8 9 10 11 12 13 | library(survival) # survival should be loaded in the environment
data(cancer, package = "survival")
cancer$status <- cancer$status - 1
if (requireNamespace("CPE", quietly = TRUE)) {
res <- evaluate_partition_semisup (
partition = factor(rep(c(1,2,3), each = 50)),
ref.unsup = factor(rep(c(1,2,3), times = c(100, 25, 25))),
ref.sup = factor(rep(c(1,2), times = c(50, 100))),
ref.semisup = factor(rep(c(3, 2, 1), times = c(120, 10, 20))),
data.surv = cancer[1:150, c("time", "status")] )
} else {
print("Partition evaluation skipped as CPE is not available")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.