spflow_model-class | R Documentation |
An S4 class that contains the estimation results of spatial econometric
interaction models estimated by the spflow()
function.
There are four subclasses that are specific to the chosen estimation method (OLS, MLE, Bayesian MCMC or S2SLS). They contain some additional information specific to the corresponding method but most behaviors and data are identical among them.
## S4 method for signature 'spflow_model'
coef(object, param_subset = NULL)
## S4 method for signature 'spflow_model'
fitted(object, return_type = "V")
## S4 method for signature 'spflow_model'
logLik(object)
## S4 method for signature 'spflow_model_mcmc'
mcmc_results(object)
## S4 method for signature 'spflow_model'
nobs(object, which = "sample")
## S4 method for signature 'spflow_model'
neighborhood(object, which_nb)
## S4 method for signature 'spflow_model'
resid(object, return_type = "V")
## S4 method for signature 'spflow_model'
results(object)
## S4 method for signature 'spflow_model'
results_flat(
object,
coef_info = c("est", "sd"),
main_info = c("estimation_method", "model_coherence", "R2_corr", "ll", "sd_error")
)
## S4 method for signature 'spflow_model'
sd_error(object)
## S4 method for signature 'spflow_model_varcov'
varcov(object)
object |
A spflow_model |
param_subset |
A character indicating the subset of model parameters to be returned "rho" relates to the autoregression parameters and "delta" to those of the exogenous variables. |
return_type |
A character indicating the format of the returned values:
|
which |
A character vector indicating the subset of observations to consider
should be one of |
which_nb |
A character vector: "OW" for origin- and "DW" for destination neighborhood |
coef_info |
A character indicating column names in the results |
main_info |
A character indicating named elements in the estimation_control or estimation_diagnostics |
estimation_results
A data.frame that contains the main results()
of the estimation
estimation_control
A list that contains all control parameters of the estimation
(see spflow_control()
)
estimation_diagnostics
A list of further indicators about the estimation
spflow_formula
A formula
spflow_networks
A spflow_network_multi-class()
spflow_matrices
A list or NULL
spflow_formula
The formula used to fit the model
spflow_indicators
A data.frame containing the indicators of od-pairs
spflow_moments
A list of moment matrices used for estimating the model
spflow_nbfunctions
A list that may contain a function to calculate the log-determinant term and one to validate the parameter space for the spatial interaction model.
The main results are accessed with the results()
method.
They are given in the form of a data frame with the following columns;
est
: value of the estimated parameter
sd
: value of the standard deviation of the parameter
t.test
: value of the t-statistic under the two-sided hypothesis that
the parameter value is 0.
p.val
: the p-value associated to the t-test
quant_025
: for Bayesian estimation the lower bound of 95% interval
quant_975
: for Bayesian estimation the upper bound of 95% interval
Lukas Dargel
spflow()
, spflow_network_classes()
spflow_results <- spflow(y9 ~ . + P_(DISTANCE), multi_net_usa_ge)
# General methods
results(spflow_results) # data.frame of main results
coef(spflow_results) # vector of estimated coefficients
fitted(spflow_results) # vector of fitted values
resid(spflow_results) # vector of residuals
nobs(spflow_results) # number of observations
sd_error(spflow_results) # standard deviation of the error term
predict(spflow_results) # computation of the in sample predictor
plot(spflow_results) # some plots for assessing the model
# MLE methods
logLik(spflow_results) # value of the likelihood function
# MLE, OLS and S2SLS methods
varcov(spflow_results) # variance covariance matrix of the estimators
# MCMC methods
spflow_results_mcmc <- spflow(
y2 ~ . + P_(DISTANCE),
multi_net_usa_ge,
estimation_control = spflow_control(estimation_method = "mcmc",
model = "model_2"))
results(spflow_results_mcmc)
plot(mcmc_results(spflow_results_mcmc)) # parameter values during the mcmc sampling
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.