Description Usage Arguments Value
Cross validation (no folds) function for GLASSO. This function is to be used with CVP_GLASSO.
| 1 2 3 4 | CVP_GLASSOc(n, S_train, S_valid, lam, diagonal = FALSE, crit_out = "avg",
  crit_in = "loss", tol_out = 1e-04, tol_in = 1e-04, maxit_out = 10000L,
  maxit_in = 10000L, adjmaxit_out = 10000L, crit_cv = "loglik",
  start = "warm", trace = "progress")
 | 
| n | sample size for X_valid (used to calculate crit_cv) | 
| S_train | pxp sample covariance matrix for training data (denominator n). | 
| S_valid | pxp sample covariance matrix for validation data (denominator n). | 
| lam | positive tuning parameters for elastic net penalty. If a vector of parameters is provided, they should be in increasing order. | 
| diagonal | option to penalize the diagonal elements of the estimated precision matrix (Ω). Defaults to  | 
| crit_out | criterion for convergence in outer (blockwise) loop. Criterion  | 
| crit_in | criterion for convergence in inner (lasso) loop. Criterion for convergence. Criterion  | 
| tol_out | convergence tolerance for outer (blockwise) loop. Defaults to 1e-4. | 
| tol_in | convergence tolerance for inner (lasso) loop. Defaults to 1e-4. | 
| maxit_out | maximum number of iterations for outer (blockwise) loop. Defaults to 1e4. | 
| maxit_in | maximum number of iterations for inner (lasso) loop. Defaults to 1e4. | 
| adjmaxit_out | adjusted maximum number of iterations. During cross validation this option allows the user to adjust the maximum number of iterations after the first  | 
| crit_cv | cross validation criterion ( | 
| start | specify  | 
| trace | option to display progress of CV. Choose one of  | 
cross validation errors (crit_cv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.