Description Usage Arguments Value
Cross validation (no folds) function for GLASSO. This function is to be used with CVP_GLASSO.
1 2 3 4  | CVP_GLASSOc(n, S_train, S_valid, lam, diagonal = FALSE, crit_out = "avg",
  crit_in = "loss", tol_out = 1e-04, tol_in = 1e-04, maxit_out = 10000L,
  maxit_in = 10000L, adjmaxit_out = 10000L, crit_cv = "loglik",
  start = "warm", trace = "progress")
 | 
n | 
 sample size for X_valid (used to calculate crit_cv)  | 
S_train | 
 pxp sample covariance matrix for training data (denominator n).  | 
S_valid | 
 pxp sample covariance matrix for validation data (denominator n).  | 
lam | 
 positive tuning parameters for elastic net penalty. If a vector of parameters is provided, they should be in increasing order.  | 
diagonal | 
 option to penalize the diagonal elements of the estimated precision matrix (Ω). Defaults to   | 
crit_out | 
 criterion for convergence in outer (blockwise) loop. Criterion   | 
crit_in | 
 criterion for convergence in inner (lasso) loop. Criterion for convergence. Criterion   | 
tol_out | 
 convergence tolerance for outer (blockwise) loop. Defaults to 1e-4.  | 
tol_in | 
 convergence tolerance for inner (lasso) loop. Defaults to 1e-4.  | 
maxit_out | 
 maximum number of iterations for outer (blockwise) loop. Defaults to 1e4.  | 
maxit_in | 
 maximum number of iterations for inner (lasso) loop. Defaults to 1e4.  | 
adjmaxit_out | 
 adjusted maximum number of iterations. During cross validation this option allows the user to adjust the maximum number of iterations after the first   | 
crit_cv | 
 cross validation criterion (  | 
start | 
 specify   | 
trace | 
 option to display progress of CV. Choose one of   | 
cross validation errors (crit_cv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.