View source: R/model_get_data.R
| construct_model_points | R Documentation | 
 
construct_model_points()
is used to construct model points from generalized linear models, and must
be preceded by model_data(). construct_model_points() can also be used
in combination with a data.frame.
construct_model_points(
  x,
  exposure = NULL,
  exposure_by = NULL,
  agg_cols = NULL,
  drop_na = FALSE
)
| x | Object of class model_data or of class data.frame | 
| exposure | column with exposure | 
| exposure_by | split column exposure by (e.g. year) | 
| agg_cols | list of columns to aggregate (sum) by, e.g. number of claims | 
| drop_na | drop na values (default to FALSE) | 
data.frame
Martin Haringa
## Not run: 
# With data.frame
library(dplyr)
mtcars |>
 select(cyl, vs) |>
 construct_model_points()
mtcars |>
  select(cyl, vs, disp) |>
  construct_model_points(exposure = disp)
mtcars |>
 select(cyl, vs, disp, gear) |>
 construct_model_points(exposure = disp, exposure_by = gear)
mtcars |>
 select(cyl, vs, disp, gear, mpg) |>
 construct_model_points(exposure = disp, exposure_by = gear,
   agg_cols = list(mpg))
# With glm
library(datasets)
data1 <- warpbreaks |>
 mutate(jaar = c(rep(2000, 10), rep(2010, 44))) |>
 mutate(exposure = 1) |>
 mutate(nclaims = 2)
pmodel <- glm(breaks ~ wool + tension, data1, offset = log(exposure),
 family = poisson(link = "log"))
model_data(pmodel) |>
 construct_model_points()
model_data(pmodel) |>
 construct_model_points(agg_cols = list(nclaims))
model_data(pmodel) |>
 construct_model_points(exposure = exposure, exposure_by = jaar) |>
 add_prediction(pmodel)
 
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.