## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----installing PaleoFidelity package, eval = FALSE---------------------------
# install.packages('devtools')
# library(devtools)
# devtools::install_github('mjkowalewski/PaleoFidelity', build_vignettes = TRUE)
# library(PaleoFidelity)
## ----data example-------------------------------------------------------------
library(PaleoFidelity)
str(FidData) # check the structure of the dataset
## ----fidelity summary function------------------------------------------------
FidelitySummary(live = FidData$live, dead = FidData$dead, gp = FidData$habitat, report = TRUE)
## ----fidelity summary function part 2-----------------------------------------
FidelitySummary(live = FidData$live, dead = FidData$dead, gp = FidData$habitat,
report = TRUE, n.filters = 30)
## ----fidelity summary function part 3-----------------------------------------
FidelitySummary(live = FidData$live, dead = FidData$dead, gp = FidData$habitat, report = TRUE, n.filters = 100)
## ----live-dead plot, fig.width=7, fig.height=6--------------------------------
par(mar=c(3, 7, 0.5, 7))
rep1 <- LDPlot(live = colSums(FidData$live),
dead = colSums(FidData$dead),
tax.names = colnames(FidData$live), toplimit = 20,
cor.measure = 'spearman', report = TRUE, iter = 1000)
## ----LD comparison------------------------------------------------------------
rep1[1:7]
## ----live-dead model, fig.width=7, fig.height=3.5-----------------------------
par(mar=c(4, 4, 0.5, 0.5))
hist(rep1$randomized.r[,2], breaks=seq(-1,1,0.05), main='',
las=1, xlab=bquote('Spearman' ~ italic(rho)))
arrows(rep1$cor.coeff[2], 100, rep1$cor.coeff[2], 10,
length=0.1, lwd=2)
## ----fidelity estimates-------------------------------------------------------
out1 <- FidelityEst(live = FidData$live, dead = FidData$dead,
gp = FidData$habitat,
n.filters = 30, iter = 499)
str(out1)
## ----fidelity estimates outputs-----------------------------------------------
out1$xc # adjusted correlation measure summary
out1$yc # adjusted similarity measure summary
## ----fidelity estimates outputs: sample-standardized--------------------------
out1$xs # sample-standardized correlation measure summary
out1$ys # sample-standardized similarity measure summary
## ----classic fidelity plot, fig.width=7, fig.height=4-------------------------
par(mar = c(4, 4, 0.5, 0.5))
SJPlot(out1, gpcol = c('aquamarine3', 'coral3'), cex.legend = 0.8)
## ----classic fidelity plot 2, fig.width=7.5, fig.height=4---------------------
par(mar = c(4, 4, 0.5, 0.5))
SJPlot(out1, gpcol = c('aquamarine3', 'coral3'), bubble = TRUE, unadj = FALSE, adjF = TRUE, cex.legend = 0.8)
## ----alpha diversity----------------------------------------------------------
out3 <- FidelityDiv(FidData$live, FidData$dead, iter=1000)
out3$x
out3$y
## ----alpha diversity 2--------------------------------------------------------
out4 <- FidelityDiv(FidData$live, FidData$dead, FidData$habitat, iter=1000)
out4$xmean
out4$ymean
out4$xgp
out4$ygp
out4$p.values
out4$p.gps
## ----plot alpha 2, fig.width=7, fig.height=4----------------------------------
out3 <- FidelityDiv(FidData$live, FidData$dead, FidData$habitat, CI = 0.95, iter = 1000)
par(mar = c(4, 4.5, 0.5, 0.5))
AlphaPlot(out3, col.gp = c('aquamarine3', 'coral3'), bgpt = 'beige', pch = 22, legend.cex = 0.8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.