testdelta1_a: Pgf Test for Poisson Distribution Delta_1a

Description Usage Arguments Details Value Author(s) References Examples

View source: R/TESTDELTA1_A.R

Description

Performs the empirical distribution function goodness-of-fit test of Poisson distribution with unknown parameter

Usage

1
testdelta1_a(x, a, n.boot)

Arguments

x

vector of nonnegative integers, the sample data

n.boot

number of bootstrap replicates

a

weight value

Details

The test of Poissonity Δ_1a was proposed by Puig and Weibb (2020). The test is based on some characterizations like the Binomial thinning operator for the probability generating function of a Poisson distribution. The test statistic is a weighted similarity measure based on the L1 norm.

\hat{Δ}^\star_{1,a} =\int_{0}^{1} |\hat{g}(t) - [\hat{g}(t)(\frac{t+1}{2})]^2| t^a dt

\hat{g}(t) denotes the empirical pobability generating function of X.

The test is implemented by parametric boostrap with n.boot replicates

Value

The function testdelta1_a returns a list with class htest containing:

Description of test

data

Description of data

test statistic

Value of test statistic

p-value

approximate p-value of the test

sample estimates

sample mean

Author(s)

Manuel Mendez Hurtado mmendezinformatica@gmail.com

References

Puig, P and Weibb, C. H. (2020) Empirical-distribution-function goodness-of-fit tests for discrete models, Computational Statistics and Data Analysis Vol 144, 1-12 https://www.sciencedirect.com/science/article/pii/S0167947319302336

Examples

1
2
x <- rpois(20,2)
testdelta1_a(x, a = 3, n.boot = 500)

MMH1997/TestPoissonity documentation built on Dec. 17, 2021, 2:11 a.m.