ClustPlus | R Documentation |
This function allows you to rationalize the clustering method selected.
ClustPlus( mat = distribution_test_mat(nrow_x = 50, n_random_distributions = 100, class_method = "discovery"), autoscale_mat = T, center_fun = colMeans, scale_fun = colSds, color_clust_Nr = 5, nboots = 100, AU_p_value = 0.95, out_PDF = T, out_PDF_name = "test" )
mat |
Defaults to a randomly generated matrix from the distribution_test_mat function. |
autoscale_mat |
Defaults to True, allows to center and scale the input matrix. |
center_fun |
Defaults to colMeans, allows to select any function that can be applied to columns as condition to center the matrix. |
scale_fun |
Defaults to colSds, allows to select any function that can be applied to columns as condition to scale the matrix. |
color_clust_Nr |
Defaults to 5, is the number of colored-partitions that the decision dendrograms will have. |
nboots |
Defaults to 100, is the number of bootstrapps using the package pvclust. |
AU_p_value |
Defaults to 0.95 or in other words the classic P value 0.05 treshold to define a significant cluster. |
out_PDF |
Defaults to TRUE, if TRUE generates the respective bootstrapped-dendrogram plots. |
out_PDF_name |
Defaults to test, name of the PDF file that will contain the plots. |
test <- ClustPlus()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.