ClustPlus: A clustering function

View source: R/ClustPlus.R

ClustPlusR Documentation

A clustering function

Description

This function allows you to rationalize the clustering method selected.

Usage

ClustPlus(
  mat = distribution_test_mat(nrow_x = 50, n_random_distributions = 100, class_method =
    "discovery"),
  autoscale_mat = T,
  center_fun = colMeans,
  scale_fun = colSds,
  color_clust_Nr = 5,
  nboots = 100,
  AU_p_value = 0.95,
  out_PDF = T,
  out_PDF_name = "test"
)

Arguments

mat

Defaults to a randomly generated matrix from the distribution_test_mat function.

autoscale_mat

Defaults to True, allows to center and scale the input matrix.

center_fun

Defaults to colMeans, allows to select any function that can be applied to columns as condition to center the matrix.

scale_fun

Defaults to colSds, allows to select any function that can be applied to columns as condition to scale the matrix.

color_clust_Nr

Defaults to 5, is the number of colored-partitions that the decision dendrograms will have.

nboots

Defaults to 100, is the number of bootstrapps using the package pvclust.

AU_p_value

Defaults to 0.95 or in other words the classic P value 0.05 treshold to define a significant cluster.

out_PDF

Defaults to TRUE, if TRUE generates the respective bootstrapped-dendrogram plots.

out_PDF_name

Defaults to test, name of the PDF file that will contain the plots.

Examples

test <- ClustPlus()

MSeidelFed/RandodiStats_package documentation built on July 31, 2022, 3 a.m.