View source: R/OmicsUnivariateStats.R
OmicsUnivariateStats | R Documentation |
This function allows you to test response variables using a generalized linear model with one or two factors and multiple levels per factor, i.e., multiple regressors, customizing the family of regression for each test according to the response variable distribution.
OmicsUnivariateStats( class_comparison_mat = abs(RandoDiStats::distribution_test_mat()), Factor1, Factor2 = NULL, Contrast = F, TukeyReturns = c("MeanComparisons", "Letters"), ReturnTukeyPlots = T, TukeyPDFName = "test", marginsTukey = c(6, 12, 3, 3), returnObject = c("OmicsTests", "class_comparison_mat") )
class_comparison_mat |
Defaults to distribution_test_mat(). |
Factor2 |
defaults to NULL. |
Contrast |
defaults to TRUE. |
TukeyReturns |
Tukey HSD can return either "MeanComparisons" or "Letters". |
ReturnTukeyPlots |
defaults to TRUE, returns a PDF with the plots. |
TukeyPDFName |
defaults to "test". |
marginsTukey |
margins of the Tukey HSD plots |
returnObject |
returns either the results from the "OmicsTests" or the cropped tested "class_comparison_mat" |
Factor1. |
Needs to be defined |
Factor1_eg <- as.factor(c(rep("RED", 200), rep("GREEN", 200), rep("BLACK", 200),rep("WHITE", 200), rep("YELLOW", 200))) test_OUS <- OmicsUnivariateStats(Factor1 = Factor1_eg) ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.