fitNBglm | R Documentation |
This function fits a negative binomial GLM for each genomic window, according to the design matrix.
fitNBglm(qs,design,link="log",keep, disp_method="region_wise",
norm_method="rpkm",init_disp=0.5 ,verbose=TRUE, minRowSum=10, pseudocount=1,
disp_iter = 3, nChunks = NULL, parallel = FALSE)
qs |
a qseaSet object |
design |
the design matrix for the GLMs |
link |
name of the link function. Currently, only the canonical dQuotelog link function is implemented. |
keep |
indices of windows to be included in the analysis. |
disp_method |
method to estimate dispersion parameters. Allowed values are dQuoteregion_wise for independent window wise estimates, dQuotecommon for a single estimate for all windows, dQuotecutAtQuantiles for window wise estimates trimmed at the 25% and 75% quantiles, or dQuoteinitial for using the dispersion parameters provided with the init_disp parameter. |
norm_method |
normalization method, as defined by normMethod() function |
init_disp |
initial estimate for dispersion parameter. Either a single parameter for all regions, or a vector with window wise parameters. |
verbose |
more messages that document the process |
minRowSum |
filter out windows with less than minRowSum reads over all samples |
pseudocount |
this value is added to the read counts |
disp_iter |
number of iterations for dispersion estimation |
nChunks |
fit GLMs in multiple chunks |
parallel |
use multicore processing |
This function returns a qseaGLM object, containing the fitted coefficients of the GLMs.
Mathias Lienhard
addContrast()
#tbd
qs=getExampleQseaSet()
design=model.matrix(~group, getSampleTable(qs))
TvN_glm=fitNBglm(qs, design, norm_method="beta")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.