posthoc.edge | R Documentation |
The 'posthoc.edge' function calculates the edgewise interpretation metrics on a set of edges selected by a generic network classifier such as 'graphclass::graphclass'.
posthoc.edge( selected.edgeLabels, all.edgeLabels, geneSetList, geneExpr, get.jaccard = TRUE, jaccard.cutoff = 0.99, get.betweenness = TRUE, betweenness.cutoff = 0.75, iter = 200, adjust.p = TRUE, ... )
selected.edgeLabels |
Lables of edges selected by a generic network classification algorithm. |
all.edgeLabels |
All edges (features) included in the classification to be evaluated. |
geneSetList |
Reference gene set collection. What type of gene sets do you wish to interpret selected functional edges by? |
geneExpr |
Gene expression data, which is represented as a ROI-by-gene data frame or matrix. ROI stands for region of interest, which corresponds to each node in the networks of classification. |
get.jaccard |
Logical. Whether to return the Jaccard index metrics. |
jaccard.cutoff |
Hard-thresholding cutoff to calculate the Jaccard index metric. See references for details. |
get.betweenness |
Logical. Whether to return the edge betweenness centrality metrics. |
betweenness.cutoff |
Hard-thresholding cutoff to calculate the edge betweenness centrality metric. See references for details. |
iter |
Number of random draws for constructing the null distribution of each metric. |
adjust.p |
Logical. Whether or not to return adjusted p-values. |
... |
Evalutaion metrics stored in a data frame.
Li, M., Kessler, D., Arroyo, J., Freytag, S., Bahlo, M., Levina, E., & Yang, J. Y. H. (2020). Guiding and interpreting brain network classification with transcriptional data. bioRxiv.
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, complex systems, 1695(5), 1-9.
## NOT RUN # ## For example, interpretability of glmnet selected edges by KEGG pathways # data(ahba) # data(gscv7.0) # library(graphclass) # data(COBRE.data) # X_cobre <- COBRE.data$X.cobre; y_cobre <- COBRE.data$Y.cobre # colnames(X_cobre) <- getEdgeLabel(node = c(1:74, 76:264)) # # library(glmnet) # cvfit <- cv.glmnet(X_cobre, y_cobre, family = "binomial", nfolds = 10) # selectedEdges <- coef(cvfit, s = "lambda.min") # selectedEdges <- names(selectedEdges[selectedEdges@i + 1, ])[-1] # metrics <- posthoc.edge(selected.edgeLabels = selectedEdges, # all.edgeLabels = colnames(X_cobre), geneSetList = gscv7.0$kegg, # geneExpr = ahba,iter = 100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.