SLIP.lasso: SLIP with the Lasso

View source: R/SLIP_Lasso.R

SLIP.lassoR Documentation

SLIP with the Lasso

Description

Use SLIP with mean screening to detect abnormal data streams each of which occurs at least one change.

Usage

SLIP.lasso(
  dat,
  alpha,
  r = 3,
  covEst = T,
  estMthd = "Cholesky",
  trueCov = NULL,
  upperPi = 0.5,
  outputW = FALSE,
  outputCP = FALSE
)

Arguments

dat

n x p matrix (p features, n observations)

alpha

FDR nominal level

r

splitting ratio, (r-1) pieces versus 1 piece

covEst

Estimate covariance or not (logical); T for Est

estMthd

optional estimation methods c("Cholesky", "POET")

trueCov

the true covariance matrix; only optional when covEst=F

upperPi

Assumed upper bound of the number of signals; 0.5(default)

outputW

a logical parameter FALSE(default); if TRUE, the W-statistics and the threshold will be returned.

outputCP

logical parameter FALSE(default); if TRUE, the change-point location in (0, 1) corresponding to signals will be returned.

Value

A list contains:

sig

indices of signals

FDP

estiamted FDP

W

W-statistic, optional only when W = TRUE

L

threshold, optional only when W = TRUE

cps

change-points, optional only when outputCP = TRUE

Examples

  N = 120; p = 200
  data = SLIP.scp.generator(N, p)
  SLIP.lasso(data$dat, 0.1)


MengtaoWen/SLIP documentation built on May 3, 2022, 6:45 a.m.