SLIP.lasso | R Documentation |
Use SLIP with mean screening to detect abnormal data streams each of which occurs at least one change.
SLIP.lasso( dat, alpha, r = 3, covEst = T, estMthd = "Cholesky", trueCov = NULL, upperPi = 0.5, outputW = FALSE, outputCP = FALSE )
dat |
n x p matrix (p features, n observations) |
alpha |
FDR nominal level |
r |
splitting ratio, (r-1) pieces versus 1 piece |
covEst |
Estimate covariance or not (logical); T for Est |
estMthd |
optional estimation methods |
trueCov |
the true covariance matrix; only optional when |
upperPi |
Assumed upper bound of the number of signals; 0.5(default) |
outputW |
a logical parameter |
outputCP |
logical parameter |
A list contains:
sig |
indices of signals |
FDP |
estiamted FDP |
W |
W-statistic, optional only when |
L |
threshold, optional only when |
cps |
change-points, optional only when |
N = 120; p = 200 data = SLIP.scp.generator(N, p) SLIP.lasso(data$dat, 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.