SLIP.thresh.d: SLIP with thresholding (d version)

View source: R/SLIP_thrsh_d.R

SLIP.thresh.dR Documentation

SLIP with thresholding (d version)

Description

Use SLIP with mean screening to detect abnormal data streams each of which occurs at least one change.

Usage

SLIP.thresh.d(
  dat,
  alpha,
  upperPi = 0.5,
  r = 3,
  covEst = T,
  estMthd = "Cholesky",
  trueCov = NULL,
  outputW = FALSE,
  outputCP = FALSE
)

Arguments

dat

n x p matrix (p features, n observations)

alpha

FDR nominal level

upperPi

retained proportion after thresholding 0 < d < 1(default 0.5)

r

splitting ratio, (r-1) pieces versus 1 piece

covEst

Estimate covariance or not (logical); T for Est

estMthd

optional estimation methods c("Cholesky", "POET")

trueCov

the true covariance matrix; only optional when covEst=F

outputW

a logical parameter FALSE(default); if TRUE, the W-statistics and the threshold will be returned.

outputCP

logical parameter FALSE(default); if TRUE, the change-point location in (0, 1) corresponding to signals will be returned.

Value

A list contains:

sig

indices of signals

FDP

estiamted FDP

W

W-statistic, optional only when W = TRUE

L

threshold, optional only when W = TRUE

cps

change-points, optional only when outputCP = TRUE

Examples

  N = 120; p = 200
  data = SLIP.scp.generator(N, p)
  SLIP.thresh.d(data$dat, 0.1)


MengtaoWen/SLIP documentation built on May 3, 2022, 6:45 a.m.