treatment_tbl <- tibble::tribble(
~Variable, ~Label, ~candy, ~`ice cream`, ~`P Value`,
"gender", "female", "124 (48.25%)", "110 (45.27%)", 0.56317088298012,
"gender", "male", "133 (51.75%)", "133 (54.73%)", 0.56317088298012,
"age", "", "42.26 (22.62)", "42.39 (21.61)", 0.946208619349777,
"sugar_factor", "", "0.46 (0.3)", "0.52 (0.29)", 0.0128504785023786,
"happiness", "happy", "185 (76.76%)", "181 (78.7%)", 0.694415226643762,
"happiness", "sad", "56 (23.24%)", "49 (21.3%)", 0.694415226643762,
"happy", "no", "56 (23.24%)", "49 (21.3%)", 0.855356296516553,
"happy", "yes", "47 (19.5%)", "44 (19.13%)", 0.855356296516553,
"happy", "Yes", "138 (57.26%)", "137 (59.57%)", 0.855356296516553
) %>%
dplyr::arrange(Variable, Label)
cont_tbl <- tibble::tribble(
~Variable, ~candy, ~`ice cream`, ~`P Value`,
"age", "42.26 (22.62)", "42.39 (21.61)", 0.946208619349777,
"sugar_factor", "0.46 (0.3)", "0.52 (0.29)", 0.0128504785023786
)
cat_tbl <- tibble::tribble(
~Variable, ~Label, ~candy, ~`ice cream`, ~`P Value`,
"happiness", "happy", "185 (76.76%)", "181 (78.7%)", 0.694415226643762,
"happiness", "sad", "56 (23.24%)", "49 (21.3%)", 0.694415226643762
) %>%
dplyr::arrange(Variable, Label)
simple_tbl <- tibble::tribble(
~Variable, ~Label, ~Statistics,
"age", "", "42.3 (22.1)",
"sugar_factor", "", "0.49 (0.3)",
"gender", "female", "235 (46.91%)",
"gender", "male", "266 (53.09%)",
"happiness", "happy", "367 (77.75%)",
"happiness", "sad", "105 (22.25%)",
"happy", "no", "105 (22.25%)",
"happy", "yes", "91 (19.28%)",
"happy", "Yes", "276 (58.47%)"
) %>%
dplyr::arrange(Variable, Label)
test_that("descriptives produces correct output", {
treat_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("gender", "age", "sugar_factor", "happiness", "happy")
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
treat_out %>% select(-`P Value`),
treatment_tbl %>% select(-`P Value`)
)
expect_equal(
treat_out %>% pull(`P Value`),
treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(treat_out, "tbl_test")
treat_out2 <- example_dat %>%
dplyr::select(-treat2, -weight, -no_weight) %>%
descriptives(treatment = "treat") %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
treat_out2 %>% select(-`P Value`),
treatment_tbl %>% select(-`P Value`)
)
expect_equal(
treat_out2 %>% pull(`P Value`),
treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(treat_out2, "tbl_test")
treat_out3 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(gender, age, sugar_factor, happiness, happy)
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
treat_out3 %>% select(-`P Value`),
treatment_tbl %>% select(-`P Value`)
)
expect_equal(
treat_out3 %>% pull(`P Value`),
treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(treat_out3, "tbl_test")
cat_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = "happiness"
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
cat_out %>% select(-`P Value`),
cat_tbl %>% select(-`P Value`)
)
expect_equal(
cat_out %>% pull(`P Value`),
cat_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(cat_out, "tbl_test")
cat_out2 <- example_dat %>%
descriptives(
treatment = treat,
variables = happiness
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
cat_out2 %>% select(-`P Value`),
cat_tbl %>% select(-`P Value`)
)
expect_equal(
cat_out2 %>% pull(`P Value`),
cat_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(cat_out2, "tbl_test")
cont_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("age", "sugar_factor")
)
expect_equivalent(
cont_out %>% select(-`P Value`),
cont_tbl %>% select(-`P Value`)
)
expect_equal(
cont_out %>% pull(`P Value`),
cont_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(cont_out, "tbl_test")
cont_out2 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(age, sugar_factor)
)
expect_equivalent(
cont_out2 %>% select(-`P Value`),
cont_tbl %>% select(-`P Value`)
)
expect_equal(
cont_out2 %>% pull(`P Value`),
cont_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(cont_out2, "tbl_test")
simple_out <- example_dat %>%
descriptives(variables = c("age", "sugar_factor", "gender", "happiness", "happy")) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(simple_out, simple_tbl)
expect_s3_class(simple_out, "tbl_test")
simple_out2 <- example_dat %>%
descriptives(variables = c(age, sugar_factor, gender, happiness, happy)) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(simple_out2, simple_tbl)
expect_s3_class(simple_out2, "tbl_test")
})
base_t_test <- t.test(
age ~ treat,
data = example_dat
)$p.value
base_chi <- chisq.test(
example_dat$happiness,
example_dat$treat
)$p.value
test_that("p-values are accurate", {
anova_output <- example_dat %>%
p_anova(var = "age", treatment = "treat", weight_var = "no_weight")
expect_equal(base_t_test, anova_output, tolerance = 0.0001)
chi_output <- example_dat %>%
p_chi_fisher(var = "happiness", treatment = "treat", weight_var = "no_weight")
expect_equal(base_chi, chi_output, tolerance = 0.0001)
})
no_weight_treatment_tbl <- tibble::tribble(
~Variable, ~Label, ~candy, ~`ice cream`, ~`P Value`,
"gender", "female", "48.25%", "45.27%", 0.56317088298012,
"gender", "male", "51.75%", "54.73%", 0.56317088298012,
"age", "", "42.26 (22.62)", "42.39 (21.61)", 0.946208619349777,
"sugar_factor", "", "0.46 (0.3)", "0.52 (0.29)", 0.0128504785023786,
"happiness", "happy", "76.76%", "78.7%", 0.694415226643762,
"happiness", "sad", "23.24%", "21.3%", 0.694415226643762,
"happy", "no", "23.24%", "21.3%", 0.855356296516553,
"happy", "yes", "19.5%", "19.13%", 0.855356296516553,
"happy", "Yes", "57.26%", "59.57%", 0.855356296516553,
) %>%
dplyr::arrange(Variable, Label)
weight_treatment_tbl <- tibble::tribble(
~Variable, ~Label, ~candy, ~`ice cream`, ~`P Value`,
"gender", "female", "48.65%", "44.97%", 0.430901201183401,
"gender", "male", "51.35%", "55.03%", 0.430901201183401,
"age", "", "42.17 (22.55)", "42.43 (21.93)", 0.901907124081075,
"sugar_factor", "", "0.45 (0.3)", "0.52 (0.28)", 0.00920038384810278,
"happiness", "happy", "77.1%", "77.38%", 0.94558985790769,
"happiness", "sad", "22.9%", "22.62%", 0.94558985790769,
"happy", "no", "22.9%", "22.62%", 0.988678719678186,
"happy", "yes", "19.22%", "18.8%", 0.988678719678186,
"happy", "Yes", "57.89%", "58.58%", 0.988678719678186
) %>%
dplyr::arrange(Variable, Label)
test_that("descriptives produces correct weighted tables", {
no_weight_treat_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("gender", "age", "sugar_factor", "happiness", "happy"),
weights = "no_weight"
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
no_weight_treat_out %>% select(-`P Value`),
no_weight_treatment_tbl %>% select(-`P Value`)
)
expect_equivalent(
no_weight_treat_out %>% pull(`P Value`),
no_weight_treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(no_weight_treat_out, "tbl_test")
no_weight_treat_out2 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(gender, age, sugar_factor, happiness, happy),
weights = no_weight
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
no_weight_treat_out2 %>% select(-`P Value`),
no_weight_treatment_tbl %>% select(-`P Value`)
)
expect_equivalent(
no_weight_treat_out2 %>% pull(`P Value`),
no_weight_treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(no_weight_treat_out2, "tbl_test")
weight_treat_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("gender", "age", "sugar_factor", "happiness", "happy"),
weights = "weight"
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
weight_treat_out %>% select(-`P Value`),
weight_treatment_tbl %>% select(-`P Value`)
)
expect_equal(
weight_treat_out %>% pull(`P Value`),
weight_treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(weight_treat_out, "tbl_test")
weight_treat_out2 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(gender, age, sugar_factor, happiness, happy),
weights = weight
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
weight_treat_out2 %>% select(-`P Value`),
weight_treatment_tbl %>% select(-`P Value`)
)
expect_equal(
weight_treat_out2 %>% pull(`P Value`),
weight_treatment_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(weight_treat_out2, "tbl_test")
})
nonparametric_tbl <- tibble::tribble(
~Variable, ~Label, ~candy, ~`ice cream`, ~`P Value`,
"happy", "no", "56 (23.24%)", "49 (21.3%)", 0.855356296516553,
"happy", "yes", "47 (19.5%)", "44 (19.13%)", 0.855356296516553,
"happy", "Yes", "138 (57.26%)", "137 (59.57%)", 0.855356296516553,
"age", "", "42.26 (22.62)", "42.39 (21.61)", 0.946208619349777,
"sugar_factor", "", "0.44 [0.18, 0.72]", "0.52 [0.28, 0.76]", 0.0116654898090404
) %>%
dplyr::arrange(Variable, Label)
nonparametric_weight_tbl <- tibble::tribble(
~Variable, ~candy, ~`ice cream`, ~`P Value`,
"age", "42 [22, 62]", "41 [26, 61]", 0.84408577110025,
"sugar_factor", "0.44 [0.18, 0.72]", "0.51 [0.3, 0.76]", 0.00831771381361891
)
test_that("descriptives produces correct non-parametric tables", {
nonparametric_out <- example_dat %>%
select(treat, happy, age, sugar_factor) %>%
descriptives(
treatment = "treat",
nonparametric = "sugar_factor"
) %>%
dplyr::arrange(Variable, Label)
nonparametric_out2 <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("happy", "age", "sugar_factor"),
nonparametric = "sugar_factor"
) %>%
dplyr::arrange(Variable, Label)
nonparametric_out3 <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("happy", "age"),
nonparametric = "sugar_factor"
) %>%
dplyr::arrange(Variable, Label)
nonparametric_out4 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(happy, age),
nonparametric = sugar_factor
) %>%
dplyr::arrange(Variable, Label)
expect_equivalent(
nonparametric_out %>% select(-`P Value`),
nonparametric_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_out %>% pull(`P Value`),
nonparametric_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_out, "tbl_test")
expect_equivalent(
nonparametric_out2 %>% select(-`P Value`),
nonparametric_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_out2 %>% pull(`P Value`),
nonparametric_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_out2, "tbl_test")
expect_equivalent(
nonparametric_out3 %>% select(-`P Value`),
nonparametric_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_out3 %>% pull(`P Value`),
nonparametric_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_out3, "tbl_test")
expect_equivalent(
nonparametric_out4 %>% select(-`P Value`),
nonparametric_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_out4 %>% pull(`P Value`),
nonparametric_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_out4, "tbl_test")
nonparametric_weight_out <- example_dat %>%
descriptives(
treatment = "treat",
variables = c("age", "sugar_factor"),
nonparametric = c("age", "sugar_factor"),
weights = "weight"
)
expect_equivalent(
nonparametric_weight_out %>% select(-`P Value`),
nonparametric_weight_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_weight_out %>% pull(`P Value`),
nonparametric_weight_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_weight_out, "tbl_test")
nonparametric_weight_out2 <- example_dat %>%
descriptives(
treatment = treat,
variables = c(age, sugar_factor),
nonparametric = c(age, sugar_factor),
weights = weight
)
expect_equivalent(
nonparametric_weight_out2 %>% select(-`P Value`),
nonparametric_weight_tbl %>% select(-`P Value`)
)
expect_equal(
nonparametric_weight_out2 %>% pull(`P Value`),
nonparametric_weight_tbl %>% pull(`P Value`),
tolerance = 0.0001
)
expect_s3_class(nonparametric_weight_out2, "tbl_test")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.