#' Linear Fit and plot of data
#'
#' Fit a linear model to two variables, return basic output about the model, and plot the model.
#'
#' @details This function is one of a group of functions that take a specific input in the form of \code{y ~ x}, following (in-part) the mosaic package formula notation. However, only simple formulas are allowed with no grouping parameter, nor multiple predictor variables.
#'
#' @param simpleformula a designation for the model formula in \code{y ~ x} notation. Must be in formula notation--see details.
#' @param data a data frame in which to evaluate formulas.
#' @param xlab optional. Text for x-axis title label for produced graph.
#' @param ylab optional. Text for y-axis title label for produced graph.
#'
#' @seealso
#' \code{\link{expFit}}
#' \code{\link{logisticFit}}
#' \code{\link{tripleFit}}
#'
#' @examples
#' data(wolf)
#' linFit(Number ~ Year, data=wolf)
#' linFit(Number ~ Year, data=wolf, xlab="Year", ylab="Number of Wolves")
#'
#' @export
linFit <- function (simpleformula, data, xlab = NULL, ylab = NULL)
{
if(is.formula(simpleformula) == FALSE){
stop("Must use formula y ~ x notation. See Details.")
}
nlhs <- length(lazyeval::f_lhs(simpleformula))
nrhs <- length(lazyeval::f_rhs(simpleformula))
if(nlhs > 1){
stop("More than one outcome in formula.\n Please use 'y ~ x' notation.")
}
if(nrhs > 1){
stop("More than one predictor in formula. \n Please use 'y ~ x' notation.")
}
mf <- model.frame(simpleformula, data)
y1 <- as.numeric(mf[[1]])
x1 <- as.numeric(mf[[2]])
lin_model <- summary(lm(y1 ~ x1))
b0 <- lin_model$coef[1]
b1 <- lin_model$coef[2]
r2 <- lin_model$r.squared
if(is.null(xlab)){
xlab <- names(mf)[2]
}
if(is.null(ylab)){
ylab <- names(mf)[1]
}
g <- ggformula::gf_point(simpleformula, data=data) %>%
ggformula::gf_lm() %>%
ggformula::gf_labs(title="Simple Linear Fit",
x=xlab,
y=ylab) %>%
ggformula::gf_theme(theme_bw())
print(g)
# plot(x1, y1, main = "Linear", pch = 16, xlab = xlab, ylab = ylab)
# abline(lm(y1 ~ x1))
lin.out <- list(Intercept = b0, Slope = b1, r_sq = r2)
cat(" Intercept = ", round(b0, 5),
"\n", "Slope = ", round(b1, 5),
"\n", "R-squared = ", round(r2, 5))
return(invisible(list(terms=lin.out, graph=g)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.