Phi: The product of ratioBeta and Kummer functions

Description Usage Arguments Value See Also Examples

Description

Compute the product of ratioBeta and kummer functions with a specific set of arguments

Usage

1
2
Phi(alpha, beta, lambda, n, relTol = 1e-06,
  nThreads = RcppParallel::defaultNumThreads())

Arguments

alpha

non-negative numeric vectors

beta

non-negative numeric vectors

lambda

numeric vector

n

non-negative integer vector

relTol

relative tolerance in the computation of the kummer function. Default value is 1e-6

nThreads

number (default the number of all cores, including logical cores) to use for computation

Value

Phi returns \frac{B(alpha + m, beta + n)}{B(alpha, beta)}\cdot {}_{1}F_{1}(lambda; alpha; beta), where {}_{1}F_{1} stands for the confluent hypergeometric function

The lengths of the input vectors must be all equal except when their length is 1, which are recycled. Otherwise NAs are produced.

See Also

ratioBeta, kummer for related functions.

Examples

1
2
3
4
5
6
7
Phi(1, 1, 0.5, 10)
Phi(1:10, 10:1, seq(0, 1, length.out = 10), 3)
# Error:
## Not run: 
Phi(1:4, 4:1, c(2, 3), c(4, 3, 1))

## End(Not run)

MobilePhoneESSnetBigData/pestim documentation built on May 31, 2019, 2:44 p.m.