| FcVARIMA | R Documentation | 
VARMA and VARIMA modelling for multivariate Forecasting
FcVARIMA(Data, ARp, i = 1, MAq, ForecastHorizont = 14, PlotIt = TRUE, Time)
| Data | matrix [1:n,1:d] | 
| ARp | numerical value, see example | 
| i | numerical value, either zero: weakly stationary time series or 1 for non stationary | 
| MAq | numerical value, see example | 
| ForecastHorizont | scalar 'f', forcasting period | 
| PlotIt | TRUE: Evaluation plots | 
| Time | Optional, for evaluation plots | 
Please read [Tsay, 2013].
List V with
| Model | List with Model: Model output of  OptimizedModel: Further optimized Model of Model using  | 
| Train | [1:(N-f),1:d] Training data for building the model | 
| Test | [(N-f+1):N,1:d] Evaluation Data of the Model | 
| Forecast | [(N-f+1):N,1:d] Prediction of the Model | 
Wrapper for VARMA
Michael Thrun
[Tsay, 2013] Tsay, R. S.: Multivariate time series analysis: with R and financial applications, John Wiley & Sons, ISBN: 978-1-118-61790-8, 2013.
VARMA
#Defines p and q
MTS::Eccm(Data)
Forecast=FcVARIMA(Data,p,0,q)#If weakly stationary
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.