##################################################################################################
# Title: Predefined functions as part of package
# Version: 18.08.01
# Created on: August 23, 2018
# Description: Reproducible code to generate list of predefined functions
##################################################################################################
##################################################################################################
# Working with batch pipelines - data frames in R, Spark or Python
##################################################################################################
##################################################################################################
# EDA
##################################################################################################
.batchPredefFunctions <- data.frame(functionName = c("univarCatDistPlots"),
heading = c("Univariate Distribution Categorical"),
engine = c("r"),
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = "",
stringsAsFactors = F)
.batchPredefFunctions %>>% dplyr::add_row(functionName = "outlierPlot",
heading = "Univariate Outlier",
# outAsIn = FALSE,
engine = "r",
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = "") -> .batchPredefFunctions
.batchPredefFunctions %>>% dplyr::add_row(functionName = "multiVarOutlierPlot",
heading = "Multivariate Outlier",
engine = "r",
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = T,
firstArgClass = "") -> .batchPredefFunctions
.batchPredefFunctions %>>% dplyr::add_row(functionName = "ignoreCols",
heading = "Ignore Columns",
engine = "r",
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = "") -> .batchPredefFunctions
.batchPredefFunctions %>>% dplyr::add_row(functionName = "getFeaturesForPyClassification",
heading = "",
engine = "r",
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = T,
firstArgClass = "") -> .batchPredefFunctions
.batchPredefFunctions %>>% dplyr::add_row(functionName = "getTargetForPyClassification",
heading = "",
engine = "r",
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = "") -> .batchPredefFunctions
##################################################################################################
##################################################################################################
# Working with Streaming pipelines - Currently supports Apache Spark Structured Streaming
##################################################################################################
##################################################################################################
# Kafka Streams as input
##################################################################################################
.streamingPredefFunctions <- data.frame(functionName = c("castKafkaStreamAsString"),
heading = c("Cast Kafka stream to a string"),
engine = c("spark-structured-streaming"),
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = "",
stringsAsFactors = F)
.streamingPredefFunctions %>>% dplyr::add_row(functionName = "convertKafkaValueFromJson",
heading = "Convert Kafka Value from JSON",
engine = c("spark-structured-streaming"),
exceptionHandlingFunction = c(as.character(substitute(genericPipelineException))),
isDataFunction = TRUE,
firstArgClass = ""
) -> .streamingPredefFunctions
devtools::use_data(.batchPredefFunctions, .streamingPredefFunctions, internal = TRUE, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.