knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(ICASSP20.T6.R) library(ClusterR)
MC <- 5 # number of Monte Carlo iterations epsilon <- 0.04 # percantage of replacement outliers N_k <- 100 # Number of samples per cluster em_bic <- matrix(c(1,1, 2,2, 2,4, 3,3, 3,4),5, 2, byrow = TRUE) embic_iter = nrow(em_bic) nu <- 3 # t qH <- 0.8 # Huber cT <- 4.685 # Tukey
tmp <- data_31(N_k, epsilon) data <- tmp$data labels_true <- tmp$labels r <- tmp$r N <- tmp$N K_true <- tmp$K_true mu_true <- tmp$mu_true S_true <- tmp$S_true L_max <- 2 * K_true # search range
cH <- sqrt(stats::qchisq(qH, r)) bH <- stats::pchisq(cH^2, r+2) + cH^2/r*(1-stats::pchisq(cH^2, r)) aH <- gamma(r/2)/pi^(r/2) / ( (2*bH)^(r/2)*(gamma(r/2) - pracma::incgam(r/2, cH^2/(2*bH))) + (2*bH*cH^2*exp(-cH^2/(2*bH)))/(cH^2 - bH * r))
g <- list(gaus = function(t) g_gaus(t, r), t = function(t) g_t(t, r, nu), huber = function(t) g_huber(t, r, list(cH, bH, aH))) rho <- list(gaus = function(t) rho_gaus(t, r), t = function(t) rho_t(t, r, nu), huber = function(t) rho_huber(t, r, list(cH, bH, aH)), tukey = function(t) rho_tukey(t, r, cT) ) psi <- list(gaus = function(t) psi_gaus(t), t = function(t) psi_t(t, r, nu), huber = function(t) psi_huber(t, r, list(cH, bH)), tukey = function(t) psi_tukey(t, cT) ) eta <- list(gaus = function(t) eta_gaus(t), t = function(t) eta_t(t, r, nu), huber = function(t) eta_huber(t, r, list(cH, bH)), tukey = function(t) eta_tukey(t, cT) )
bic <- array(0, c(MC, L_max, 3, embic_iter)) like <- array(0, c(MC, L_max, 3, embic_iter)) pen <- array(0, c(MC, L_max, 3, embic_iter)) oldw <- getOption("warn") options(warn = -1) for(iMC in 1:MC){ for(ii_embic in 1:embic_iter){ for(ll in 1:L_max){ sprintf('iMc: %i, ii_embic: %i, ll: %i', iMC, ii_embic, ll) # EM tmp <- EM_RES(data, ll, g[[em_bic[ii_embic, 1]]], psi[[em_bic[ii_embic, 1]]]) mu_est <- tmp$mu_hat S_est <- tmp$S_hat t <- tmp$t R <- tmp$R mem <- (R == apply(R, 1, max)) # BIC bicf <- BIC_F(data, S_est, mu_est, t, mem, rho[[em_bic[ii_embic, 2]]], psi[[em_bic[ii_embic, 2]]], eta[[em_bic[ii_embic, 2]]]) bica <- BIC_A(S_est, t, mem, rho[[em_bic[ii_embic, 2]]], psi[[em_bic[ii_embic, 2]]], eta[[em_bic[ii_embic, 2]]]) bics <- BIC_S(S_est, t, mem, rho[[em_bic[ii_embic, 2]]]) bic[iMC, ll, , ii_embic] <- c(bicf$bic, bica$bic, bics$bic) like[iMC, ll, , ii_embic] <- c(bicf$like, bica$like, bics$like) pen[iMC, ll, , ii_embic] <- c(bicf$pen, bica$pen, bics$pen) } } } options(warn = oldw)
bic_avg <- rowMeans(aperm(bic, c(2,3,4,1)), dims=3) pen_avg <- rowMeans(aperm(pen, c(2,3,4,1)), dims=3) like_avg <- rowMeans(aperm(like, c(2,3,4,1)), dims=3)
ICASSP20.T6.R::plot_scatter(cbind(labels_true, data), K_true, r) marker = c('o','s','d','*','x','^','v','>','<','p','h', '+','o') names = c("Finite", "Asymptotic", "Schwarz") g_names = c("Gaus", "t", "Huber", "Tukey")
for(ii_embic in 1:embic_iter){ graphics::matplot(bic_avg[,,ii_embic], lwd = 1.5, xlab = "number of clusters", ylab = "BIC", pch=c("F", "A", "S"), type = 'b', col=1:3) graphics::title(paste("Nk:",toString(N_k),", eps:", toString(epsilon),", EM-", g_names[em_bic[ii_embic,1]], ", BIC-", g_names[em_bic[ii_embic,2]])) graphics::grid() graphics::legend("topleft", legend=names, lty=1:3, cex=0.8, col=1:3) }
graphics::matplot(like_avg[,1,], lwd = 1.5, xlab = "number of clusters", ylab = "Likelihood", pch=marker[1:5], type = 'b', col=1:5) graphics::title(paste("Nk:",toString(N_k),", eps:", toString(epsilon))) leg_names = c() for (i in 1:embic_iter) { leg_names <- c(leg_names, paste("EM-", g_names[em_bic[i, 1]], ", BIC-", g_names[em_bic[i,2]])) } graphics::grid() graphics::legend("topleft", legend=leg_names, lty=1:5, pch=marker[1:5], cex=0.8, col=1:5)
for(ii_embic in 1:embic_iter){ graphics::matplot(pen_avg[,,ii_embic], lwd = 1.5, xlab = "number of clusters", ylab = "Penalty", pch=c("F", "A", "S"), type = 'b', col=1:3) graphics::title(paste("Nk:",toString(N_k),", eps:", toString(epsilon),", EM-", g_names[em_bic[ii_embic,1]], ", BIC-", g_names[em_bic[ii_embic,2]])) graphics::grid() graphics::legend("topleft", legend=names, lty=1:3, cex=0.8, col=1:3) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.