extract.well.mappings: Map 96 to 384 wells using Plate List and Content Report data

Description Usage Arguments Details Value See Also Examples

View source: R/primary_analysis.R

Description

extract.well.mappings takes plate list and content data and extracts the actual 96->384 well mapping used in the analysis, as opposed to the default one observed in the initial test case.

Usage

1
extract.well.mappings(plate.list.data, plate.content.data, analysis.code)

Arguments

plate.list.data

Data frame of plate list data

plate.content.data

Data frame of plate content report data

analysis.code

Character vector: case-sensitive letter A-H for run code

Details

The output is sorted lexicographically by 96 well label. Replicate assignments (1 vs 2 vs 3) are similarly resolved by lexicographical sort of the 384 well labels. This should compel the output to exactly match the previous protocol's Data/Analysis/*xlsx format if used without further shuffling.

Value

List with entries Rep1.Well, Rep2.Well, Rep3.Well, corresponding to columns in the Data/Analysis/*xlsx files. Each will be a factor.

See Also

create.analysis() for calling function; openxlsx::read.xlsx() for an example of how to generate the plate list or content data frames.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
content.filename <- "PlateContentReport_GP0317-TL1.xls"
list.filename <- "PlateList_GP0317-TL1.xls"
content.data <- openxlsx:read.xlsx(content.filename,
  sheet = 1,
  rowNames = FALSE, colNames = TRUE
)
list.data <- openxlsx::read.xlsx(list.filename,
  sheet = 1,
  rowNames = FALSE, colNames = TRUE
)
analysis.code <- "H"
well.mappings <- extract.well.mappings(
  list.data, content.data,
  analysis.code
)

NCI-CGR/cgrtelomeres documentation built on Feb. 11, 2021, 12:12 p.m.