library(nphys) library(plotly) #library(quantmod)
This markdown describes how we can use the traces component of the field
data set to observe and analyze the inter
data(field)
xA = list( title = "Time (ms)" ) yA = list( range = c(-1.2,0.1), title = "mV" ) # updateMenus <- list( # active = -1, # type = "buttons", # buttons = list( # list( # label = "Cond", # method = "update", # args = list(list(visible = c(FALSE, TRUE)), # list(title = "Cond")) # ), # list( # label = "Decay", # method = "update", # args = list(list(visible = c(TRUE, FALSE)), # list(title = "Decay")) # ) # ) # ) plot <- plotly::plot_ly(data = data.frame(field$traces), x = ~ms, y = ~Bl_Avg, type = "scatter", mode = "markers") plot = plotly::add_trace(p = plot,x = ~ms, y = ~Decay_Avg) plot = plotly::add_trace(p = plot,x = ~ms, y = ~Cond_Avg) plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.