Description Usage Arguments Details Value Examples
Performs splines clustering using K-means
1 2 3 4 5 6 7 8 9 10 11 | ## S4 method for signature 'Moanin'
splines_kmeans(
object,
n_clusters = 10,
init = "kmeans++",
n_init = 10,
max_iter = 300,
random_seed = .Random.seed[1],
fit_splines = TRUE,
rescale = TRUE
)
|
object |
An object of class |
n_clusters |
int optional, default: 10 |
init |
["kmeans++", "random", "optimal_init"] |
n_init |
int, optional, default: 10 Number of initialization to perform. |
max_iter |
int, optional, default: 300 Maximum number of iteration to perform |
random_seed |
int, optional, default: NULL.
Passed to argument |
fit_splines |
boolean, optional, default: TRUE Whether to fit splines or not. |
rescale |
boolean, optional, default: TRUE Whether to rescale the data or not. |
If Moanin
object's slot has log_transform=TRUE, then the data will be transformed by the function log(x+1) before applying splines and clustering.
A list in the format returned by KMeans_rcpp
,
with the following elements added or changed:
centroids
The centroids are rescaled so that they range from
0-1
fit_splines
Logical, the value of fit_splines
given to the
function
rescale
The value of rescale
given to the function
1 2 3 4 5 | data(exampleData)
# Use the default options
moanin <- create_moanin_model(data=testData, meta=testMeta)
out <- splines_kmeans( moanin,n_clusters=5)
table(out$clusters)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.