Description Usage Arguments Value Examples
View source: R/spatialSPsurv.R
Markov Chain Monte Carlo (MCMC) to run time-varying Bayesian split population survival model with spatial frailties.
Returns a summary of a exchangeSPsurv object via summary.mcmc
.
Print method for a spatialSPsurv
x.
Returns a plot of a spatialSPsurv object via plot.mcmc
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | spatialSPsurv(
duration,
immune,
Y0,
LY,
S,
A,
data,
N,
burn,
thin,
w = c(1, 1, 1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
ini.W = 0,
ini.V = 0,
form = c("Weibull", "exponential", "loglog"),
prop.varV,
prop.varW,
id_WV = colnames(A)
)
## S3 method for class 'spatialSPsurv'
summary(object, parameter = character(), ...)
## S3 method for class 'spatialSPsurv'
print(x, ...)
## S3 method for class 'spatialSPsurv'
plot(x, parameter = character(), ...)
|
duration |
survival stage equation written in a formula of the form Y ~ X1 + X2 + ... where Y is duration until failure or censoring. |
immune |
split stage equation written in a formula of the form C ~ Z1 + Z2 + ... where C is a binary indicator of immunity. |
Y0 |
the elapsed time since inception until the beginning of time period (t-1). |
LY |
last observation year (coded as 1; 0 otherwise) due to censoring or failure. |
S |
spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information. |
A |
an a times a spatial weights matrix where a is the number of unique spatial units (S) load as a separate file. |
data |
data.frame. |
N |
number of MCMC iterations. |
burn |
burn-in to be discarded. |
thin |
thinning to prevent from autocorrelation. |
w |
size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. c(1,1,1). |
m |
limit on steps in the slice sampling. A vector of values for beta, gamma, rho. |
ini.beta |
initial value for the parameter vector beta. By default is 0. |
ini.gamma |
initial value for the parameter vector gamma. By default is 0. |
ini.W |
initial value for the parameter vector W. By default is 0. |
ini.V |
initial value for the parameter vector V. By default is 0. |
form |
type of parametric model (Weibull, Exponential, or Log-Logistic). |
prop.varV |
proposal for variance of V in Metropolis-Hastings. |
prop.varW |
proposal for variance of W in Metropolis-Hastings. |
id_WV |
vector of type character that modifies the colnames of W and V in the model’s result. By default is |
object |
an object of class |
parameter |
one of five parameters of the |
... |
additional parameter. |
x |
an object of class |
spatialSPsurv returns an object of class "spatialSPsurv"
.
A "spatialSPsurv"
object has the following elements:
betas |
matrix, numeric values of the posterior for each variable in the duration equation . |
gammas |
matrix, numeric values of the posterior for each variable in the immune equation. |
rho |
vector, numeric values of rho. |
lambda |
vector, numeric values of lambda. |
delta |
vector, numeric values of delta. |
W |
matrix, numeric values of the posterior for Ws. |
V |
matrix, numeric values of the posterior for Vs. |
X |
matrix of X's variables. |
Z |
matrix of Z's variables. |
Y |
vector of ‘Y’. |
Y0 |
vector of ‘Y0’. |
C |
vector of ‘C’. |
S |
vector of ‘S’. |
ini.beta |
numeric initial values of beta. |
ini.gamma |
numeric initial values of gamma. |
ini.W |
numeric initial values of W. |
ini.V |
numeric initial values of V. |
form |
character, type of distribution. |
call |
description for the model to be estimated. |
list. Empirical mean, standard deviation and quantiles for each variable.
list. Empirical mean, standard deviation and quantiles for each variable.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "ccode", tID = "year",
freq = "year", ongoing = FALSE)
walter <- spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)
set.seed(123456)
model <-
spatialSPsurv(
duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
instabl + intensityln + ethfrac + unpko,
immune = cured ~ fhcompor1 + lgdpl + victory,
Y0 = 't.0',
LY = 'lastyear',
S = 'sp_id' ,
data = walter[[1]],
N = 100,
burn = 10,
thin = 10,
w = c(1,1,1),
m = 10,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
A = walter[[2]]
)
print(model)
summary(model, parameter = "betas")
# plot(model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.