## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 3
)
## ----eval = FALSE-------------------------------------------------------------
# devtools::install_github("NorskRegnesentral/rWHAP")
## ----eval=TRUE----------------------------------------------------------------
library(rWHAP)
## ----eval = TRUE--------------------------------------------------------------
data("ERAInterim")
## -----------------------------------------------------------------------------
summary(SWH)
## -----------------------------------------------------------------------------
summary(SLP)
## -----------------------------------------------------------------------------
summary(SLP.grad)
## -----------------------------------------------------------------------------
intercept.fourier = fourier(x = rep(1,length(time.all)))
## -----------------------------------------------------------------------------
training.test = split.data(years = years.all,
trainingPeriod = 2006:2014,
testPeriod = 2015)
## -----------------------------------------------------------------------------
pred.dist = getPreddistr(SWH = SWH,
SLP = SLP,
SLP.grad = SLP.grad,
latCell = 4,
longCell = 4,
neig = 2,
na.thresh = 500,
latSWH = latitudeSWH,
lonSWH = longitudeSWH,
latSLP = latitudeSLP,
longSLP = longitudeSLP,
intercept.fourier = intercept.fourier,
maxlag = 10)
# Extract the mean, standard deviation and the
# estimated lambda parameter for the predictive
# distribution.
pred.mean = pred.dist$pred.mean
pred.sd = pred.dist$pred.sd
pred.lambda = pred.dist$pred.lambda
print(pred.dist$fits)
## -----------------------------------------------------------------------------
obs <- SWH[4, 4, training.test[[2]]]
## -----------------------------------------------------------------------------
pit <- pBoxCox(obs, pred.mean, pred.sd, pred.lambda)
## -----------------------------------------------------------------------------
mae = maeEst(obs = obs,
mean = pred.mean,
sd = pred.sd,
lambda = pred.lambda)
## -----------------------------------------------------------------------------
plotPred(obs = obs,
t.period = c(1:100),
mean = pred.mean,
sd = pred.sd,
lambda = pred.lambda)
plotPred(obs = obs,
t.period = c(1361:1460),
mean = pred.mean,
sd = pred.sd,
lambda = pred.lambda)
## -----------------------------------------------------------------------------
rPlotPred(obs = obs,
t.period = c(40:49),
mean = pred.mean,
sd = pred.sd,
lambda = pred.lambda,
n.random = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.