#' AlignDataYears
#'
#' Used in conf/functions.R to link the year data was collected to the
#' appropriate scenario year for a data layer. A dataframe is returned with both the
#' data year and the corresponding scenario year. The scenario year is used to join
#' data layers with different data years for use in models.
#'
#' The scenario year is typically the year the OHI
#' assessment takes place. For example, in year 2018, the scenario year is 2018.
#' However, because there are often lags in data collection, the year associated with
#' the data may be 2016. To make matters more complicated (*sigh*), goal models are calculated using
#' multiple datasets which may have different lag times. This function using the information
#' provided in conf/scenario_data_years.csv to link the data years to the appropriate scenario
#' year.
#'
#'
#' @param layer_nm name of the data layer, e.g. "le_wage_cur_base_value"
#' @param ayers_obj this is the OHI layers object created in calculate_scores.R which is a
#' list of all the data layers and other model parameters needed to calculate OHI scores.
#'
#' @return Returns an internally used dataframe with the layer data and the data year with the
#' corresponding scenario year.
#'#'
#'
#' @keywords ohicore
#' @examples
#' \dontrun{
#' }
#' @export
AlignDataYears <- function(layer_nm, layers_obj=layers) { #layer_nm="le_wage_cur_base_value"
all_years <- conf$scenario_data_years %>%
dplyr::mutate(scenario_year= as.numeric(scenario_year),
data_year = as.numeric(data_year)) %>%
dplyr::filter(layer_name %in% layer_nm) %>%
dplyr::select(layer_name, scenario_year, year=data_year)
layer_vals <- layers_obj$data[[layer_nm]]
layers_years <- all_years %>%
dplyr::left_join(layer_vals, by="year") %>%
dplyr::select(-layer)
names(layers_years)[which(names(layers_years)=="year")] <- paste0(layer_nm, "_year")
return(layers_years)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.