## ----r_setup, include = FALSE-----------------------------------------------------------------------------------------------------------------------
library(radiant)
knitr::opts_chunk$set(
comment = NA,
cache = FALSE,
message = FALSE,
warning = FALSE,
dpi = 144
)
options(width = 150)
## ----single_mean_price, fig.height = 3, fig.width = 5-----------------------------------------------------------------------------------------------
library(radiant)
data(diamonds, envir = environment())
result <- single_mean(diamonds, "price")
summary(result)
plot(result)
## ----scatter, fig.height = 4, fig.width = 5---------------------------------------------------------------------------------------------------------
visualize(
diamonds,
xvar = "carat",
yvar = "price",
type = "scatter",
facet_row = "clarity",
color = "clarity",
labs = labs(title = "Diamond Prices ($)"),
custom = FALSE
)
## ----single_mean_mpg, fig.height = 3, fig.width = 5-------------------------------------------------------------------------------------------------
result <- single_mean(
mtcars,
var = "mpg",
comp_value = 20,
alternative = "greater"
)
summary(result)
plot(result, plots = "hist")
## ----compare_means_diamonds, fig.height = 5, fig.width = 4------------------------------------------------------------------------------------------
result <- compare_means(
diamonds,
var1 = "clarity",
var2 = "price",
adjust = "bonf"
)
summary(result)
plot(result, plots = c("bar", "density"))
## ----eval = FALSE-----------------------------------------------------------------------------------------------------------------------------------
# ## start radiant in Rstudio, load the example data, then click the power
# ## icon in the navigation bar and click on Stop
# radiant::radiant()
## ----compare_means_salary, fig.height = 3, fig.width = 4--------------------------------------------------------------------------------------------
result <- compare_means(salary, var1 = "rank", var2 = "salary")
summary(result)
plot(result)
## ---------------------------------------------------------------------------------------------------------------------------------------------------
result <- regress(diamonds, rvar = "price", evar = c("carat","clarity"))
summary(result, sum_check = "confint")
pred <- predict(result, pred_cmd = "carat = 1:10")
print(pred, n = 10)
## ----regress_coeff, fig.width = 6, fig.height = 4---------------------------------------------------------------------------------------------------
plot(result, plots = "coef")
## ----regress_dashboard, fig.width = 5, fig.height = 7-----------------------------------------------------------------------------------------------
plot(result, plots = "dashboard", lines = "line", nrobs = 100)
## ----hclus, fig.width = 4, fig.height = 5-----------------------------------------------------------------------------------------------------------
## run hierarchical cluster analysis on the shopping data, variables v1 through v6
result <- hclus(shopping, "v1:v6")
## summary - not much here - plots are more important
summary(result)
## check the help file on how to plot results from hierarchical cluster
## analysis default plots
## it looks like there is a big jump in overall within-cluster
## heterogeneity in the step from 3 to 2 segments
plot(result)
## ----dendro, fig.width = 4, fig.height = 5----------------------------------------------------------------------------------------------------------
## show the dendrogram with cutoff at 0.05
plot(result, plots = "dendro", cutoff = 0.05)
## ----kclus, fig.width = 5, fig.height = 6-----------------------------------------------------------------------------------------------------------
## plots created above suggest 3 clusters may be most appropriate
## use kclus to create the clusters
## generate output and store cluster membership
result <- kclus(shopping, vars = "v1:v6", nr_clus = 3)
summary(result)
plot(result, plots = c("density", "bar"))
shopping <- store(shopping, result, name = "clus")
## was the data really changed?
head(shopping)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.