#' Read in Fatality Analysis Reporting System data file
#'
#' \code{fars_read} reads in the US National Highway Traffic Safety
#' Administration's Fatality Analysis Reporting System data.
#'
#' @param filename csv file containing data
#'
#' @return \code{fars_read} will search within the specified path for the
#' filename provided. If the file exists, it will be imported and returned as
#' a data frame tbl. If it does not exist an error message will be returned.
#'
#' @examples
#' fars_read("data/my_fars_data.csv")
#'
#' @importFrom readr read_csv
#' @importFrom dplyr tbl_df
#'
#' @export
fars_read <- function(filename) {
if(!file.exists(filename))
stop("file '", filename, "' does not exist")
data <- suppressMessages({
readr::read_csv(filename, progress = FALSE)
})
dplyr::tbl_df(data)
}
#' Make File Name
#'
#' \code{make_file} creates a name for the accident csv file based on the
#' year provided.
#'
#' @param year the year to add to the file name
#'
#' @return \code{make_file} will return a file name based on the year provided.
#' For example, if 2017 is provided as the year the name that will be returned
#' will be "accident_2017.csv.bz2".
#'
#' @examples
#' make_filename(2017)
#'
#' @export
make_filename <- function(year) {
year <- as.integer(year)
sprintf("accident_%d.csv.bz2", year)
}
#' Read in Fatality Analysis Reporting System data files
#'
#' \code{fars_read_years} will read in multiple Fatality Analysis Reporting
#' System data files based on the years provided.
#'
#' @param years The years relating to the file names to be read in
#'
#' @return \code{fars_read_years} will search for the file names based on the
#' years provided. For example, if 2016:2017 is provided \code{fars_read_years}
#' will search for the following files:
#' \itemize{
#' \item "accident_2016.csv.bz2"
#' \item "accident_2017.csv.bz2"
#' }
#' If the files exist a list containing the respective data will be returned.
#' If the files do not exist an error will be returned stating the invalid year(s).
#'
#' @seealso \code{\link{make_filename}} for naming convention
#'
#' @examples
#' fars_read_years(2015:2016)
#'
#' @importFrom dplyr mutate
#' @importFrom dplyr select
#'
#' @export
fars_read_years <- function(years) {
lapply(years, function(year) {
file <- make_filename(year)
tryCatch({
dat <- fars_read(file)
dplyr::mutate(dat, year = year) %>%
dplyr::select(MONTH, year)
}, error = function(e) {
warning("invalid year: ", year)
return(NULL)
})
})
}
#' Summarize Observations by Year
#'
#' \code{fars_summarize_years} will read in multiple Fatality Analysis Reporting
#' System data files based on the years provided and summarise the number of
#' observations by month and year.
#'
#' @param years The years relating to the file names to be read in
#'
#' @return \code{fars_summarize_years} will return a wide-formatted data frame.
#'
#' @seealso \code{\link{fars_read_years}} to understand how the file name is created
#'
#' @examples
#' fars_summarize_years(2015:2016)
#'
#' @importFrom dplyr bind_rows
#' @importFrom dplyr group_by
#' @importFrom dplyr summarize
#' @importFrom tidyr spread
#'
#' @export
fars_summarize_years <- function(years) {
dat_list <- fars_read_years(years)
dplyr::bind_rows(dat_list) %>%
dplyr::group_by(year, MONTH) %>%
dplyr::summarize(n = n()) %>%
tidyr::spread(year, n)
}
#' Map State Accidents
#'
#' \code{fars_map_state} will plot the accidents on a map for a given state
#' and year.
#'
#' @param state.num State number
#' @param years The year of concern
#'
#' @return \code{fars_map_state} will return a map plot of accidents for the given
#' state and year. If no accidents occurred in that state for that year a
#' notification will be provided and if an invalid state number is provided
#' an error will be returned.
#'
#' @seealso
#' \code{\link{make_filename}} to understand how the file name is created
#' \code{\link{fars_read}} to understand how the file is read in
#'
#' @examples
#' fars_map_state(2, 2016)
#'
#' @importFrom dplyr filter
#' @importFrom maps map
#' @importFrom graphics points
#'
#' @export
fars_map_state <- function(state.num, year) {
filename <- make_filename(year)
data <- fars_read(filename)
state.num <- as.integer(state.num)
if(!(state.num %in% unique(data$STATE)))
stop("invalid STATE number: ", state.num)
data.sub <- dplyr::filter(data, STATE == state.num)
if(nrow(data.sub) == 0L) {
message("no accidents to plot")
return(invisible(NULL))
}
is.na(data.sub$LONGITUD) <- data.sub$LONGITUD > 900
is.na(data.sub$LATITUDE) <- data.sub$LATITUDE > 90
with(data.sub, {
maps::map("state", ylim = range(LATITUDE, na.rm = TRUE),
xlim = range(LONGITUD, na.rm = TRUE))
graphics::points(LONGITUD, LATITUDE, pch = 46)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.