## load libraries
library(dplyr)
library(tidyr)
library(readr)
library(xlsx)
## HDI Data --------------------------------------------------------------------
## read raw data downloaded from (source: http://hdr.undp.org/en/data#)
hdi_data <- read_csv(paste0(here::here(), "/data-raw/hdi_19002015.csv"))
hdi_data <- hdi_data %>%
rename(country = Country) %>%
mutate(country = as.factor(country))
## remove HDI Rank (2015) from hdi_data wide format
hdi_wide <- hdi_data %>%
select(- `HDI Rank (2015)`,
country)
## convert hdi_data from wide to long
hdi <- hdi_data %>%
select(- `HDI Rank (2015)`,
country) %>%
gather(year, human_development_index, - country)
## get country with hdi rank in 2015
hdi_rank_2015 <- hdi_data %>%
select(country,
hdi_rank = `HDI Rank (2015)`)
## extract hdi 2015
hdi_2015 <- hdi %>%
filter(year == 2015) %>%
inner_join(hdi_rank_2015)
## addhdi_wide, hdi, hdi_2015 to package data
devtools::use_data(hdi_wide, hdi, hdi_2015, overwrite = TRUE)
## CPI Data --------------------------------------------------------------------
## rad raw data downloaded from (https://www.transparency.org/cpi2015#downloads)
cpi_data <- read.xlsx(paste0(here::here(), "/data-raw/cpi_2015.xlsx"),
sheetName = 'CPI 2015')
## rename and select desired fields
cpi_2015 <- cpi_data %>%
rename(country = Country.Territory,
country_code = Country.Code,
cpi_rank = Country.Rank,
region = Region,
corruption_perception_index = CPI.2015.Score) %>%
select(country, country_code, cpi_rank, region, corruption_perception_index) %>%
as_tibble()
## add cpi_2015 to package data
devtools::use_data(cpi_2015, overwrite = TRUE)
## 2015 POPULATION -------------------------------------------------------------
## read gapminder population data (source: https://docs.google.com/spreadsheet/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xlsx)
pop_data <- read.xlsx(paste0(here::here(), "/data-raw/indicator gapminder population.xlsx"),
sheetName = 'Data')
## select 2015 population data
pop_2015 <- pop_data %>%
select(country = Total.population,
population = X2015)
## COMBINE HDI CPI Data 2015 ---------------------------------------------------
## load gapminder
library(gapminder)
## get country-continent pairs from gapminder
gapminder_cont <- gapminder %>%
filter(year == 2007) %>%
select(country, continent)
## join hdi, cpi and continents data for 2015
hdi_cpi_2015 <- hdi_2015 %>%
inner_join(cpi_2015) %>%
inner_join(gapminder_cont) %>%
left_join(pop_2015) %>%
mutate(country = as.factor(country))
## modify the order of the columns
hdi_cpi_2015 <- hdi_cpi_2015 %>%
select(country, country_code, region, continent, population, corruption_perception_index, cpi_rank, human_development_index, hdi_rank, year)
## add hdi_cpi_2015 to package data
devtools::use_data(hdi_cpi_2015, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.