KDE | R Documentation |
This function provides the kernel estimator for the distribution function for interval‐grouped data.
KDE(bw = c("AMISE", "boot"))
KDE.fun(x, start, end, count, h)
x |
for time-to-event data, the predictor variable is time |
start |
for each assessment interval, this is the start time |
end |
for each assessment interval, this is the end time |
count |
for each assessment interval, this is the number of events |
h |
bandwidth value |
bw |
Method for bandwidth selection |
The function 'KDE.fun()' provides the kernel estimator for the distribution function, as modified for interval-grouped data. The equation is:
F(x) = \sum {w_i * pnorm( \frac{x - t_i}{h}) }
where 'w_i' is the observed proportion of individuals getting the event in the i-th interval, 't_i' is the mid-point of the i-th time interval, 'x' is the time and 'h' is the bandwidth. The function KDE() is meant to be used with the 'drmte()' function, to estimate the optimal bandwidth, according to a bootstrap selector (Barreiro-Ures et al., 2019).
The 'KDE.fun()' functions returns the CDF, for given values of time. The KDE() function returns a list containing the nonlinear function and other facilities, which are internally used by the 'drmte()' function.
Andrea Onofri. Codes for the estimation of optimal bandwidth have been largely taken from the 'binnednp' package (Barreiro-Ures et al., 2019).
Barreiro‐Ures, D., Francisco‐Fernández, M., Cao, R., Fraguela, B.B., Doallo, R., González‐Andújar, J.L., Reyes, M., 2019. Analysis of interval‐grouped data in weed science: The binnednp Rcpp package. Ecol Evol 9, 10903–10915.
Cao, R., Francisco-Fernández, M., Anand, A., Bastida, F., González-Andújar, J.L., 2013. Modeling Bromus diandrus Seedling Emergence Using Nonparametric Estimation. Journal of Agricultural, Biological, and Environmental Statistics 18, 64–86.
Cao, R., Francisco-Fernández, M., Anand, A., Bastida, F., González-Andújar, J.L., 2011. Computing statistical indices for hydrothermal times using weed emergence data. The Journal of Agricultural Science 149, 701–712.
Gonzalez-Andujar, J.L., Francisco-Fernandez, M., Cao, R., Reyes, M., Urbano, J.M., Forcella, F., Bastida, F., 2016. A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence. Weed Research 56, 367–376.
data(chickweed)
mod <- drmte(count ~ start + end, data=chickweed,
fct = KDE())
summary(mod)
plot(mod, ylim = c(0, 0.25), log = "")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.