# Kernel estimator for the distribution function
# Modified on 27/5/2021
KDE.fun <- Vectorize( function(x, start, end, count, h) {
mod <- NPcdf(start, end, count)
y <- mod$Type1plot$time
w <- mod$Type1plot$pdf[-1]
t <- y[-length(y)] + diff(y)/2
sum(w * stats::pnorm((x - t)/h))
}, "x")
KDE <- function(bw = c("AMISE", "boot")){
fct <- function(x, parm) {
pred <- x[,1]; start <- x[,2]; end <- x[,3]; count <- x[,4]
h <- parm[1]
KDE.fun(x, start, end, count, h)
}
ssfct <- function(data){
h <- 1
}
names <- c("h")
text <- "Kernel estimator for the distribution function"
bw <- match.arg(bw)
## Returning the function with self starter and names
returnList <- list(fct = fct, ssfct = ssfct, names = names, text = text,
bw = bw)
class(returnList) <- "drcMean"
invisible(returnList)
}
# #Skeleton for DRC function ######################
# KDE.fun <- Vectorize( function(x, start, end, count, h) {
# mod <- NPcdf(start, end, count)
# y <- mod$Type1plot$time
# w <- mod$Type1plot$pdf[-1]
# t <- y[-length(y)] + diff(y)/2
# sum(w * stats::pnorm((x - t)/h))
# }, "x")
#
# KDEfun <- function(){
#
# fct <- function(x, parm) {
# pred <- x[,1]; start <- x[,2]; end <- x[,3]; count <- x[,4]
# h <- parm[1]
# KDE.fun(x, start, end, count, h)
# }
# ssfct <- function(data){
# # Self-starting code here
# # x1 <- data[, 1]
# # x2 <- data[, 2]
# # x3 <- data[ ,3]
# # k <- Kest(timeBef, timeAf, count, gplugin, type="N")
# h <- 1
# }
# names <- c("h")
# text <- "Kernel density estimator"
#
# ## Returning the function with self starter and names
# returnList <- list(fct = fct, ssfct = ssfct, names = names, text = text)
# class(returnList) <- "drcMean"
# invisible(returnList)
# }
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.