knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(wbpip)
Povcalnet uses two methods to estimate poverty and inequality statistics from
grouped data.
One method is based on fitting a Lorenz Quadratic functional form to the
grouped data
the other one uses a Beta Lorenz function
This vignette focuses on the Lorenz Quadratic method.
# Input definition welfare_mean <- 51.56 ppp <- 3.69 daily_povline <- 1.9 monthly_povline <- daily_povline * 365 / 12 # Create grouped data (Type 1) # http://iresearch.worldbank.org/povcalnet/PovCalculator.aspx population <- c(0.0005, 0.0032, 0.014799999999999999, 0.0443, 0.0991, 0.257, 0.4385, 0.5938, 0.7089, 1) welfare <- c(5.824760527229386e-05, 0.000604029410841011, 0.0037949334793616948, 0.013988878652244477, 0.036992164583098786, 0.12140708906131342, 0.24531391873082081, 0.37446670169288321, 0.48753116241194566, 1) # Estimate poverty statistics wbpip:::gd_compute_pip_stats_lb(welfare = welfare, population = population, requested_mean = welfare_mean, povline = monthly_povline, default_ppp = ppp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.