Description Usage Arguments Examples
Sample size re-estimation using the Conditional Power and Predicitve power approach
1 | reestimate_pwr(alpha, D, d_k, beta0, RT, scenario)
|
alpha |
Numeric values |
D |
Numeric values |
d_k |
Numeric values |
beta0 |
Numeric values |
RT |
Numeric values |
scenario |
Values should be between 0 and 1 |
1 2 3 4 5 6 7 8 9 | reestimate_pwr(alpha = 0.05,D = 82,d_k = 53,beta0 = 0.459,RT = 1.78,scenario = 1)
cond_result <- reestimate_pwr(alpha = 0.05,D = 82,d_k = 53,beta0 = 0.459,RT = 1.78,scenario = 1)
cond_result
event_cond <- search.best.n.fixed(nstart = 150,nmax = 300,D = 82,beta0 = 0.459,scenario = 1)
event_trend <- search.best.n.trend(nstart = 60,nmax = 300,D = 82,beta0 = 0.459,scenario = 1)
event_pred <- search.best.n.pred(nstart = 60,nmax = 300,D = 82,beta0 = 0.459,scenario = 1)
required_cond <- (event_cond*2 - cond_result$d_k)
required_trend <- (event_trend*2 - cond_result$d_k)
required_pred <- (event_pred*2 - cond_result$d_k)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.