#' Fuzzy Match Species within Genus
#'
#' @description
#' This function attempts to fuzzy match species names within a genus to the ppendemic database using fuzzyjoin::stringdist for fuzzy matching.
#'
#' @param df A tibble containing the species data to be matched.
#' @param target_df A tibble representing the ppendemic database containing the reference list of endemic species.
#'
#' @return
#' A tibble with an additional logical column fuzzy_match_species_within_genus, indicating whether the specific epithet was successfully fuzzy matched within the matched genus (`TRUE`) or not (`FALSE`).
#' @keywords internal
fuzzy_match_species_within_genus_helper <- function(df, target_df){
# subset database
genus <- df |>
dplyr::distinct(Matched.Genus) |>
unlist()
database_subset <- memoised_get_trees_of_genus(genus, target_df)
# fuzzy match
matched <- df |>
fuzzyjoin::stringdist_left_join(database_subset,
by = c('Orig.Species' = 'Species'),
distance_col = 'fuzzy_species_dist') |>
dplyr::mutate(Matched.Species = Species) |>
dplyr::select(-c('Species', 'Genus')) |>
dplyr::group_by(Orig.Genus, Orig.Species) |>
dplyr::filter(fuzzy_species_dist == min(fuzzy_species_dist)) |>
dplyr::group_modify(
~ifelse(nrow(.x) == 0, return(.x),
return(dplyr::slice_head(.x,n=1))) ## In cases of multiple matches: we choose first match. Alternatively could use something more sophisticated here: like for instance choosing the one with more support (present in more databases)
) |>
dplyr::ungroup()
unmatched <-
fuzzyjoin::stringdist_anti_join(df,
database_subset,
by = c('Orig.Species' = 'Species'))
assertthat::assert_that(nrow(df) == (nrow(matched) + nrow(unmatched)))
# combine matched and unmatched and add Boolean indicator: TRUE = matched, FALSE = unmatched
combined <- dplyr::bind_rows(matched, unmatched,
.id = 'fuzzy_match_species_within_genus') |>
dplyr::mutate(fuzzy_match_species_within_genus = (fuzzy_match_species_within_genus == 1)) |> ## convert to Boolean
dplyr::relocate(c('Orig.Genus',
'Orig.Species',
'Orig.Infraspecies')) ## Genus & Species column at the beginning of tibble
return(combined)
}
fuzzy_match_species_within_genus <- function(df, target_df = NULL){
assertthat::assert_that(all(c('Orig.Genus',
'Orig.Species',
'Orig.Infraspecies',
'Matched.Genus') %in% colnames(df)))
## solve issue of empty input tibble and needed to ensure compatibility with sequential_matching: because there the columns already exists for the second backbone
if(nrow(df) == 0){
if(!all(c('fuzzy_match_species_within_genus',
'fuzzy_species_dist') %in% colnames(df))){
return(tibble::add_column(df,
fuzzy_match_species_within_genus = NA,
fuzzy_species_dist = NA))
}
else{
return(df)
}
}
## solve issue in second iteration of sequential_matching: necessary to remove fuzzy_species_dist column: otherwise 2 columns are generated 'fuzzy_species_dist...1, fuzzy_species_dist...2'
if('fuzzy_species_dist' %in% colnames(df)){
df <- df |>
dplyr::mutate(fuzzy_species_dist = NULL)
}
res <- df |>
dplyr::group_by(Matched.Genus) |>
dplyr::group_split() |> ## TODO: change to dplyr::group_map to be able to omit dplyr::group_split() stage
map_dfr_progress(fuzzy_match_species_within_genus_helper,
target_df) |>
dplyr::relocate(c('Orig.Genus',
'Orig.Species',
'Orig.Infraspecies'))
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.