multispic | R Documentation |
Fit a multispecies surplus production model
multispic(
inputs,
center = TRUE,
log_K_option = par_option(),
log_B0_option = par_option(),
log_r_option = par_option(),
log_sd_B_option = par_option(),
log_q_option = par_option(),
log_sd_I_option = par_option(),
logit_rho_option = par_option(),
logit_phi_option = par_option(),
K_betas_option = par_option(),
pe_betas_option = par_option(),
species_cor = "none",
temporal_cor = "none",
survey_groups = ~survey,
K_groups = ~1,
K_covariates = ~0,
pe_covariates = ~0,
n_forecast = 0,
leave_out = NULL,
start_par = NULL,
nlminb_loops = 0,
light = FALSE,
silent = FALSE
)
inputs |
List that includes the following data.frames with required columns in
parentheses: |
center |
Center input values to aid convergence? |
log_K_option |
Settings for the estimation of |
log_B0_option |
Settings for the estimation of the starting biomass;
define using |
log_r_option |
Settings for the estimation of |
log_sd_B_option |
Settings for the estimation of sd for the process; define using
|
log_q_option |
Settings for the estimation of |
log_sd_I_option |
Settings for the estimation of sd for the indices; define using
|
logit_rho_option |
Setting for the estimation of the correlation across stocks; define using
|
logit_phi_option |
Setting for the estimation of temporal correlation in the process errors;
define using |
K_betas_option |
Setting for the estimation of covariate effects on K;
define using |
pe_betas_option |
Setting for the estimation of covariate effects on the process errors;
define using |
species_cor |
Correlation structure across species ( |
temporal_cor |
Correlation structure across time ( |
survey_groups |
Formula specifying the grouping variables to use to estimate catchability,
|
K_groups |
Formula specifying a grouping variable to use to estimate |
K_covariates |
Formula describing covariate effects on carrying capacity, K. Intercepts
are not estimated. No covariates are applied if set to |
pe_covariates |
Formula describing relationship between surplus production (process error)
and covariates. Note that intercepts are not estimated. No covariates are
applied if set to |
n_forecast |
Number of years to forecast. Assumes status quo landings and covariates (i.e. terminal values assumed through projected years). |
leave_out |
Specific index values to leave out from the analysis (row number).
Useful for cross-validation. All data are kept if |
start_par |
List of starting parameter values. Start parameters are internally defined, however, it may be useful to supply parameters from a previous model fit to speed up convergence. |
nlminb_loops |
Number of times to repeat optimization to refine estimates. |
light |
Skip running |
silent |
Disable tracing information? |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.