#' A Test of the Efficiency of a Given Portfolio (Gibbons, Ross, Shanken, 1989)
#'
#' The test is for the following multivariate linear regression model:
#' \deqn{y_j = \alpha_j + \sum_{k=1}^q \beta_{jk}x_k + \varepsilon_j, j=1,...,p.}
#' where \eqn{y_j} denotes the excess return on asset \eqn{j};
#' \eqn{(x_1,...,x_q)} is the excess return on the porfolio whose
#' efficiency is being tested; and \eqn{\varepsilon_j} is the disturbance
#' term for asset \eqn{j}. The disturbances are assumed to be jointly
#' normally distributed with mean zero and nonsingular covariance matrix
#' \eqn{\Sigma}, conditional on the excess returns for portfolios \eqn{(x_1,...,x_q)}.
#'
#' The test of the efficiency of a given portfolio is equivalent to
#' the following hypothesis test.
#' \itemize{
#' \item \code{H0}: all the Intercepts \eqn{\alpha} are zero, i.e.
#' \eqn{\alpha_j=0, \forall j=1,...,p.}
#' \item \code{H1}: otherwise.
#' }
#'@param x samples of predictor which is a \eqn{n*q} matrix.
#'@param y samples of response which is a \eqn{n*p} vector.
#'@return A list with the following elements:
#' \itemize{
#' \item \code{p.value}: the \eqn{p}-value of the GRS test.
#' \item \code{grs.stat}: the test statistic of the GRS test.
#' }
#'@examples
#' ## Quick example for the GRS test
#'
#'
#' set.seed(1)
#' n = 200; q = 2; p = 3
#' x <- matrix( rnorm(n*q), nrow = n)
#'
#' # Generate data under H0
#' y <- matrix(NA, nrow = n, ncol = p)
#' y[,1] <- x[,1] + x[,2] + rnorm(n, sd = 0.5)
#' y[,2] <- x[,1] + 2 * x[,2] + rnorm(n, sd = 0.5)
#' y[,3] <- x[,1] + 3 * x[,2] + rnorm(n, sd = 0.5)
#' GRS.test(x, y)$p.value
#'
#' # Generate data under H1
#' y <- matrix(NA, nrow = n, ncol = p)
#' y[,1] <- 1 + x[,1] + x[,2] + rnorm(n, sd = 0.5)
#' y[,2] <- 1 + x[,1] + 2 * x[,2] + rnorm(n, sd = 0.5)
#' y[,3] <- x[,1] + 3 * x[,2] + rnorm(n, sd = 0.5)
#' GRS.test(x, y)$p.value
#'
#' @references
#' Gibbons, M. R., Ross, S. A. and Shanken, J. (1989).
#' A test of the efficiency of a given portfolio. Econometrica, 57(5), 1121-1152.
GRS.test <- function(x, y){
# Initial Values
p <- ncol(y)
y <- unname(as.matrix(y))
# alpha = 0.05 # the significant level of given.
Y <- y
mean.y <- matrix(colMeans(y), ncol = 1)
dev.y <- mean.y - mean(mean.y)
tmp.x <- x # factors involved
mean.x <- matrix(colMeans(tmp.x), ncol = 1) # sample means
omega.x <- var(tmp.x) # sample variance-covariance matrix
n <- nrow(tmp.x) # the number of time points
q <- ncol(tmp.x) # q assets
# X <- .Internal(cbind(1, 1, tmp.x)) # X <- cbind(rep(1, n), x
X <- cbind(1, tmp.x)
coeff <- solve(t(X) %*% X) %*% (t(X) %*% Y)
intercept <- matrix(coeff[1,], ncol = 1) # intercept
model <- lm(Y~X[,2:(q+1)]) # linear model
sigma <- t(model$residuals) %*% model$residuals / (n-q-1)
# GRS test statistics ~ F(p, n-p-q)
grs.stat <- n*(n-p-q) / (p*(n-q-1)) * (t(intercept) %*% solve(sigma) %*% intercept) /
(1 + (t(mean.x) %*% solve(omega.x) %*% mean.x))
# criterion <- qf(1-alpha, p, n-p-q)
p.value <- 1 - pf(grs.stat, p, n-p-q)
return(list(p.value = p.value, grs.stat = grs.stat))
# return(p.value)
# return(grs.stat)
# return(mean(abs(intercept)))
# return(mean(abs(intercept)) / mean(abs(dev.y)))
# return(mean((intercept)^2) / mean((dev.y)^2))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.