#' @export
makeRLearner.surv.tuneMtryFast = function() {
makeRLearnerSurv(
cl = "surv.tuneMtryFast",
package = "tuneRanger",
par.set = makeParamSet(
makeIntegerLearnerParam(id = "mtryStart", lower = 1L),
makeIntegerLearnerParam(id = "num.treesTry", lower = 1L, default = 50L),
makeNumericLearnerParam(id = "stepFactor", lower = 0L),
makeNumericLearnerParam(id = "improve", lower = 0L),
makeLogicalLearnerParam(id = "trace", default = TRUE),
makeIntegerLearnerParam(id = "min.node.size", lower = 1L),
makeLogicalLearnerParam(id = "replace", default = TRUE),
makeNumericLearnerParam(id = "sample.fraction", lower = 0L, upper = 1L),
makeNumericVectorLearnerParam(id = "split.select.weights", lower = 0, upper = 1),
makeUntypedLearnerParam(id = "always.split.variables"),
makeDiscreteLearnerParam("respect.unordered.factors", values = c("ignore", "order", "partition"), default = "ignore"),
makeDiscreteLearnerParam(id = "importance", values = c("none", "impurity", "permutation"), default = "none", tunable = FALSE),
makeLogicalLearnerParam(id = "write.forest", default = TRUE, tunable = FALSE),
makeLogicalLearnerParam(id = "scale.permutation.importance", default = FALSE, requires = quote(importance == "permutation"), tunable = FALSE),
makeIntegerLearnerParam(id = "num.threads", lower = 1L, when = "both", tunable = FALSE),
makeLogicalLearnerParam(id = "save.memory", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "verbose", default = TRUE, when = "both", tunable = FALSE),
makeIntegerLearnerParam(id = "seed", when = "both", tunable = FALSE),
makeDiscreteLearnerParam(id = "splitrule", values = c("gini", "extratrees"), default = "gini"),
makeIntegerLearnerParam(id = "num.random.splits", lower = 1L, default = 1L, requires = quote(splitrule == "extratrees")),
makeLogicalLearnerParam(id = "keep.inbag", default = FALSE, tunable = FALSE)
),
properties = c("numerics", "factors", "ordered", "weights", "prob"),
name = "tuneMtryFast for ranger",
short.name = "tuneMtryFast",
note = ""
)
}
#' @export
trainLearner.surv.tuneMtryFast = function(.learner, .task, .subset, .weights = NULL, classwt = NULL, cutoff, ...) {
data = getTaskData(.task, .subset)
tn = getTaskTargetNames(.task)
tuneRanger::tuneMtryFast(formula = NULL, data = data, dependent.variable.name = tn[1L], status.variable.name = tn[2L], num.treesTry = 50, doBest = TRUE, case.weights = .weights, ...)
}
#' @export
predictLearner.surv.tuneMtryFast = function(.learner, .model, .newdata, ...) {
p = predict(object = .model$learner.model, data = .newdata)
rowMeans(p$chf)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.