makeRLearner.regr.caretRanger = function() {
makeRLearnerRegr(
cl = "regr.caretRanger",
package = "caret",
par.set = makeParamSet(
),
properties = c("numerics", "factors", "ordered"),
name = "Random Forests",
short.name = "caretRanger",
note = "By default, internal parallelization is switched off (`num.threads = 1`), `verbose` output is disabled, `respect.unordered.factors` is set to `TRUE`. All settings are changeable."
)
}
trainLearner.regr.caretRanger = function(.learner, .task, .subset, .weights = NULL, ...) {
data = getTaskData(.task, subset = .subset, target.extra = TRUE)
caret::train(data$data, data$target, method = "ranger", weights = .weights, num.trees = 2000, num.threads = 10)
}
predictLearner.regr.caretRanger = function(.learner, .model, .newdata, ...) {
model = .model$learner.model
p = predict(object = model, newdata = .newdata, ...)
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.