NAG: Optimize mathematical function using Nesterov Accelerated...

Description Usage Arguments

View source: R/optim.NAG.R

Description

This functions uses the Nesterov Accelerated Gradient (NAG) to find the minimum of a (multi-) dimensional mathematical function. The parameter 'phi' controls for the weight of prior gradients thus indirectly steering the velocity of the algorithm.

Usage

1
2
3
4
5
6
7
8
NAG(
  f,
  x0,
  max.iter = 100,
  step.size = 0.001,
  phi = 0.8,
  stop.grad = .Machine$double.eps
)

Arguments

f

a (multi-) dimensional function to be eptimized.

x0

the starting point of the optimization.

max.iter

the maximum number of iterations performed in the optimization.

step.size

the step size (sometimes referred to as 'learn-rate') of the optimization.

phi

controls the weight of the prior gradient contribution in the velocity.

stop.grad

the stop-criterion for the gradient change.


PhilippScheller/visualDescend documentation built on Feb. 5, 2020, 4:04 a.m.