gradDescent: Optimize mathematical function using gradient descent

Description Usage Arguments

View source: R/optim.gradientdescent.R

Description

This functions uses the gradient descent algorithm to find the minimum of a (multi-) dimensional mathematical function.

Usage

1
2
3
4
5
6
7
gradDescent(
  f,
  x0,
  max.iter = 100,
  step.size = 0.001,
  stop.grad = .Machine$double.eps
)

Arguments

f

a (multi-) dimensional function to be eptimized.

x0

the starting point of the optimization.

max.iter

the maximum number of iterations performed in the optimization.

step.size

the step size (sometimes referred to as 'learn-rate') of the optimization.

stop.grad

the stop-criterion for the gradient change.


PhilippScheller/visualDescend documentation built on Feb. 5, 2020, 4:04 a.m.