fit_survSuperLearner: Wrapper of 'survSuperLearner::survSuperLearner'

View source: R/fit_surv.R

fit_survSuperLearnerR Documentation

Wrapper of survSuperLearner::survSuperLearner

Description

Wrapper of survSuperLearner::survSuperLearner

Usage

fit_survSuperLearner(
  formula,
  data,
  id.var,
  time.var,
  event.var,
  nfold = 1,
  option = list(event.SL.library = c("survSL.coxph", "survSL.weibreg", "survSL.gam",
    "survSL.rfsrc"), cens.SL.library = c("survSL.coxph", "survSL.weibreg", "survSL.gam",
    "survSL.rfsrc")),
  ...
)

Arguments

formula

formula containing all covariates to be used

data

data containing all covariates, follow-up time, event indicator and id

id.var

see SDRsurv

time.var

see SDRsurv

event.var

see SDRsurv

nfold

number of folds used when fitting survival curves with sample splitting. Default is 1, meaning no sample splitting

option

a list containing optional arguments passed to survSuperLearner::survSuperLearner. We encourage using a named list. Will be passed to survSuperLearner::survSuperLearner by running a command like do.call(survSuperLearner, option). The user should not specify time, event, X, newX or new.times. We encourage the user to specify event.SL.library and cens.SL.library.

...

ignored

Value

a pred_event_censor class containing fitted survival curves for individuals in data


QIU-Hongxiang-David/SDRsurv documentation built on March 29, 2024, 8:41 a.m.