fit_surv_option: Options of machine learning methods' wrappers for fitting...

View source: R/fit_surv.R

fit_surv_optionR Documentation

Options of machine learning methods' wrappers for fitting conditional survival curves

Description

Options of machine learning methods' wrappers for fitting conditional survival curves

Usage

fit_surv_option(
  nfold = 1,
  option = list(),
  oob = TRUE,
  tune = TRUE,
  tune.option = list(),
  lambda = 0.5
)

Arguments

nfold

number of folds used when fitting survival curves with sample splitting. Default is 1, meaning no sample splitting

option

a list containing optional arguments passed to the wrapped machine learning function. Will be used in a command like do.call(machine.learning, option) where machine.learning is the machine learning function being called. formula and data should not be specified. For randomForestSRC::rfsrc, if tune=TRUE, then mtry and nodesize should not be specified either.

oob

whether to use out-of-bag (OOB) fitted values from random forests (randomForestSRC::rfsrc, party::cforest) and grf::survival_forest) when sample splitting is not used (nfold=1). Ignored otherwise.

tune

whether to tune mtry and nodesize for randomForestSRC::rfsrc. Ignored for other methods.

tune.option

a list containing optional arguments passed to randomForestSRC::tune.rfsrc if randomForestSRC::rfsrc is used and tune=TRUE; ignored otherwise. doBest should not be specified.

lambda

bandwidth parameter for uniform smoothing kernel in nearest neighbours estimation for method "akritas". The default value of 0.5 is arbitrary and should be chosen by the user


QIU-Hongxiang-David/SDRsurv documentation built on March 29, 2024, 8:41 a.m.