knitr::opts_chunk$set(echo = TRUE)
You can install bdc from github with:
# Install remotes if not available if(!"remotes" %in% installed.packages()[,"Package"]) install.packages("remotes") # Install bdc package from Github remotes::install_github("RS-eco/bdc", build_vignettes = T)
After installation, simply load the bdc
package:
library(bdc)
If you encounter a bug or if you have any problems, please file an issue on Github.
You can start the bdc Shiny app, by:
library(shiny) runApp()
Please note: The app currently only supports the alt_bavtk4tel
dataset.
The individual datasets can then be loaded, by:
# Elevation & Terrain (SRTM) data("alt_bav_tk4tel") # Outline of Bavaria (GADM) data("bavaria") # BayWRF monthly climate data load(system.file("extdata", "baywrf_pr_bav.rda", package = "bdc")) load(system.file("extdata", "baywrf_tas_bav.rda", package = "bdc")) load(system.file("extdata", "baywrf_tasmin_bav.rda", package = "bdc")) load(system.file("extdata", "baywrf_tasmax_bav.rda", package = "bdc")) # BioTime data for Germany data("biotime_deu") # BirdLife, IUCN and GARD range data data("amphibians_bav") data("bird_bav") data("gard_reptiles_bav") load(system.file("extdata", "mammals_bav.rda", package = "bdc")) data("odonata_bav") data("reptiles_bav") # Bird range data from the LFU data("bird_bva_shape") # sf-object data("bird_bva_shape_tk4tel") #gridded # Bird and Odonata Atlas data data("aves_tk4tel") data("odonata_tk4tel") # Carbon stock data data("carbon_bav") # CCI land cover data data("cci_bav_tk4tel") # Chelsa climate data data("chelsa_bav_tk4tel") # Euro-cordex climate simulations data("cordex_bioclim_bav_tk4tel") data("cordex_bioclim_bav") load(system.file("extdata", "cordex_prAdjust_bav.rda", package = "bdc")) load(system.file("extdata", "cordex_tasminAdjust_bav.rda", package = "bdc")) load(system.file("extdata", "cordex_tasmaxAdjust_bav.rda", package = "bdc")) #The analysis of all monthly Euro-Cordex climate scenarios can be found here: https://raw.githubusercontent.com/RS-eco/bdc/main/vignettes/bavaria-eurocordex.html #And the corresponding .Rmd-file is available from here: https://raw.githubusercontent.com/RS-eco/bdc/main/vignettes/bavaria-eurocordex.Rmd # Corine land-cover and land cover change data("corine_cha_bav_tk4tel") # Land-cover change data("corine_cha_bav") data("corine_cha_perc_bav") data("corine_lc_bav_tk4tel") # Land cover data("corine_lc_bav") # Corine Land cover data at 100 x 100 m resolution data("corine_lc_perc_bav") # Corine land cover percentage data at 1 x 1 km resolution # Gridded population data for Bavaria at 1km resolution data("bav_pop_1km") # Diva shapefiles for Germany data("diva_cover_deu") # Land-cover data data("diva_pop_deu") # Population data data("diva_rails_deu") # Railway tracks data("diva_roads_deu") # Roads data("diva_water_areas_deu") # Lakes data("diva_water_lines_deu") # Rivers # DWD climate data data("dwd_annual_ts_bav") # Annual time series data of whole of Bavaria load(system.file("extdata", "dwd_yearmon_rsms_bav_tk4tel.rda", package = "bdc")) # Gridded monthly climate data load(system.file("extdata", "dwd_yearmon_tadnmm_bav_tk4tel.rda", package = "bdc")) load(system.file("extdata", "dwd_yearmon_tadxmm_bav_tk4tel.rda", package = "bdc")) load(system.file("extdata", "dwd_yearmon_tamm_bav_tk4tel.rda", package = "bdc")) # E-OBS observed climate data data("e-obs_elev_ens_0.1deg_bav") data("e-obs_rr_ens_mean_0.1deg_bav_yearmon") data("e-obs_rr_ens_spread_0.1deg_bav_yearmon") data("e-obs_tg_ens_mean_0.1deg_bav_yearmon") data("e-obs_tg_ens_spread_0.1deg_bav_yearmon") data("e-obs_tn_ens_mean_0.1deg_bav_yearmon") data("e-obs_tn_ens_spread_0.1deg_bav_yearmon") data("e-obs_tx_ens_mean_0.1deg_bav_yearmon") data("e-obs_tx_ens_spread_0.1deg_bav_yearmon") # EBCC data of Bavaria data("ebcc_bav") # EU-DEM elevation & hillshade data data("eu_dem_bav_500m") data("hillshade_bav_500m") # EuroLST Land surface temperature data("eurolst_bav_tk4tel") # EWEMBI daily temperature and precipitation data("ewembi_bav") # EWEMBI daily temperature and precipitation data for the whole of Germany can be extracted from the processNC package (https://github.com/RS-eco/processNC) # List daily temperature files for Germany from 1979 till 2016 ewembi_tas_ger <- list.files(paste0(system.file(package="processNC"), "/extdata"), pattern="tas.*\\.nc", full.names=T) # List daily precipitation files for Germany from 1979 till 2016 ewembi_pr_ger <- list.files(paste0(system.file(package="processNC"), "/extdata"), pattern="tas.*\\.nc", full.names=T) # Forest disturbance data data("forest_disturbance_bav_300m") # GIMMS3g NDVI data data("gimms3g_v0_bav") data("gimms3g_v1_bav") # Globcover land cover data("globcover_bav_tk4tel") # Human footprint data("hfp_1993_v3_bav") data("hfp_2009_v3_bav") # Important bird areas data("iba_bav") # ISIMIP2b climate and land-use data("isimip_bio_bav_tk4tel") data("isimip_lu_bav_tk4tel") # KK09, KK10 data data("kk09_bav") data("kk10_bav") # Lakes & Rivers data("lakes_points_bav") data("lakes_poly_bav") data("rivers_bav") # Landsystem data data("landsystem_bav_tk4tel") data("landsystem_bav") data("landsystem_perc_bav_tk4tel") data("landsystem_perc_bav") # Merraclim climate data("merraclim_2.5m_bav_tk4tel") data("merraclim_5m_bav_tk4tel") data("merraclim_10m_bav_tk4tel") # MODIS land-cover data("modis_lc_bav_tk4tel") # MODIS Land surface temperature data("modis_lst_bav_tk4tel") # Naturraeume (from large to small) data("ng_geo") data("ng_gross") data("ng_ssymank") data("ng_meynen_schmit") data("ng_unter_absp") data("ng_abspziele") # Protected areas data("dist_pa_bav_tk4tel") load(system.file("extdata", "pa_bav.rda", package = "bdc")) data("pa_bav_tk4tel") # Plot coordinates data("plot_coords_bav") # Potential natural vegetation data("pnv_bav") # Predicts data data("predicts_deu") # Standardized taxonomy data("taxonomyStd") # Tandem-X Forest/Non-forest data("tdm_fnf_bav") # TK25 grid data("tk4tel_db") data("tk4tel_grid") data("tk25_grid") # Worldclim v1.4 data("wc1.4_10m_bav_tk4tel") data("wc1.4_2.5m_bav_tk4tel") data("wc1.4_30s_bav_tk4tel") data("wc1.4_5m_bav_tk4tel") # Worldclim v2.0 data("wc2.0_10m_bav_tk4tel") data("wc2.0_2.5m_bav_tk4tel") data("wc2.0_30s_bav_tk4tel") data("wc2.0_5m_bav_tk4tel") # WFDE5 re-analysis climate data (0.5°) data("wfde5_rainf_bav") data("wfde5_snowf_bav") data("wfde5_tair_bav")
Note: The code of how the datasets were created can be found in the data-raw folder.
Note: Climate, land-use and species data for the whole of Europe can be found in the edc package.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.