#' @title Read-In and Clean the Japanese NITE Chemical Management GHS
#' Classification Results
#' @description This function reads-in and automatically cleans the Japanese
#' NITE Chemical Management GHS Classification results.
#' @param path (Character) The path to the XLSX file.
#' @param clean_non_ascii (Logical) Should the non-ASCII characters be
#' reasonably converted? Defaults to \code{FALSE}.
#' @details This function reads-in and automatically cleans the Japanese NITE
#' Chemical Management GHS Classification results.
#' @return Returns a data frame.
#' @author Raoul Wolf (\url{https://github.com/RaoulWolf/})
#' @note Tested with the March 2022 version; GHS classifications omitted.
#' @examples \dontrun{
#' download.file(
#' url = "https://www.nite.go.jp/chem/english/ghs/files/list_all_e.xlsx",
#' destfile = "list_all_e.xlsx"
#' )
#'
#' path <- "list_all_e"
#'
#' nite <- read_jp_nite(path)
#' }
#' @importFrom openxlsx read.xlsx
#' @export
read_jp_nite <- function(path, clean_non_ascii = FALSE) {
if (!is.logical(clean_non_ascii) || is.na(clean_non_ascii)) {
clean_non_ascii <- FALSE
}
nite <- openxlsx::read.xlsx(
xlsxFile = path,
cols = 1:6,
na.strings = c("-", "", " ", " -")
)
colnames(nite) <- c(
"cas", "cas_without_hyphen", "substance_name", "id", "fy", "new_revise"
)
nite <- transform(
nite,
cas = ifelse(
test = .check_cas(cas),
yes = cas,
no = NA_character_
),
cas_without_hyphen = as.integer(cas_without_hyphen)
)
if (clean_non_ascii) {
nite <- transform(
nite,
substance_name = .clean_non_ascii(substance_name),
id = .clean_non_ascii(id)
)
}
nite
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.