| dnnsurv | R Documentation | 
DNNSurv neural fits a neural network based on pseudo-conditional survival probabilities.
dnnsurv(
  formula = NULL,
  data = NULL,
  reverse = FALSE,
  time_variable = "time",
  status_variable = "status",
  x = NULL,
  y = NULL,
  cutpoints = NULL,
  cuts = 5L,
  custom_model = NULL,
  loss_weights = NULL,
  weighted_metrics = NULL,
  optimizer = "adam",
  early_stopping = FALSE,
  min_delta = 0,
  patience = 0L,
  verbose = 0L,
  baseline = NULL,
  restore_best_weights = FALSE,
  batch_size = 32L,
  epochs = 10L,
  validation_split = 0,
  shuffle = TRUE,
  sample_weight = NULL,
  initial_epoch = 0L,
  steps_per_epoch = NULL,
  validation_steps = NULL,
  ...
)
formula | 
 
  | 
data | 
 
  | 
reverse | 
 
  | 
time_variable | 
 
  | 
status_variable | 
 
  | 
x | 
 
  | 
y | 
 
  | 
cutpoints | 
 
  | 
cuts | 
 
  | 
custom_model | 
 
  | 
loss_weights, weighted_metrics | 
 See keras::compile.keras.engine.training.Model.  | 
optimizer | 
 
  | 
early_stopping | 
 
  | 
min_delta, patience, baseline, restore_best_weights | 
 See keras::callback_early_stopping.  | 
verbose | 
 
  | 
batch_size, epochs, validation_split, shuffle, sample_weight, initial_epoch, steps_per_epoch, validation_steps | 
 See keras::fit.keras.engine.training.Model. # nolint  | 
... | 
 
  | 
Code for generating the conditional probabilities and pre-processing data is taken from https://github.com/lilizhaoUM/DNNSurv.
An object of class survivalmodel.
Zhao, L., & Feng, D. (2020). DNNSurv: Deep Neural Networks for Survival Analysis Using Pseudo Values. https://arxiv.org/abs/1908.02337
if (requireNamespaces(c("keras", "pseudo")))
  # all defaults
  dnnsurv(data = simsurvdata(10))
  # setting common parameters
  dnnsurv(time_variable = "time", status_variable = "status", data = simsurvdata(10),
          early_stopping = TRUE, epochs = 100L, validation_split = 0.3)
  # custom model
  library(keras)
  cuts <- 10
  df <- simsurvdata(50)
  # shape = features + cuts
  input <- layer_input(shape = c(3L + cuts), name = 'input')
  output <- input %>%
     layer_dense(units = 4L, use_bias = TRUE) %>%
     layer_dense(units = 1L, use_bias = TRUE ) %>%
     layer_activation(activation="sigmoid")
  model <- keras_model(input, output)
  class(model)
  dnnsurv(custom_model = model, time_variable = "time",
          status_variable = "status", data = df, cuts = cuts)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.