| predict.parametric | R Documentation | 
Predicted values from a fitted Parametric survival model.
## S3 method for class 'parametric'
predict(
  object,
  newdata,
  form = c("aft", "ph", "tobit", "po"),
  times = NULL,
  type = c("survival", "risk", "all"),
  distr6 = FALSE,
  ntime = 150,
  round_time = 2,
  ...
)
object | 
 (  | 
newdata | 
 
  | 
form | 
 
  | 
times | 
 
  | 
type | 
 (  | 
distr6 | 
 (  | 
ntime | 
 
  | 
round_time | 
 
  | 
... | 
 
  | 
The form parameter determines how the distribution is created.
Options are:
 Accelerated failure time ("aft") 
h(t) = h_0(\frac{t}{exp(lp)})exp(-lp)
 Proportional Hazards ("ph") 
h(t) = h_0(t)exp(lp)
 Tobit ("tobit") 
h(t) = \Phi(\frac{t - lp}{scale})
 Proportional odds ("po") 
h(t) = \frac{h_0(t)}{1 + (exp(lp)-1)S_0(t)}
where h_0,S_0 are the estimated baseline hazard and survival functions
(in this case with a given parametric form), lp is the predicted linear
predictor calculated using the formula lp = \hat{\beta} X_{new} where
X_{new} are the variables in the test data set and \hat{\beta}
are the coefficients from the fitted parametric survival model (object).
\Phi is the cdf of a N(0, 1) distribution, and scale is the
fitted scale parameter.
A numeric if type = "risk", a distr6::Distribution()
(if distr6 = TRUE) and type = "survival"; a matrix if
(distr6 = FALSE) and type = "survival" where entries are survival
probabilities with rows of observations and columns are time-points;
or a list combining above if type = "all".
if (requireNamespaces(c("distr6", "survival"))) {
  library(survival)
  set.seed(42)
  train <- simsurvdata(10)
  test <- simsurvdata(5)
  fit <- parametric(Surv(time, status) ~ ., data = train)
  # Return a discrete distribution survival matrix
  predict_distr <- predict(fit, newdata = test)
  predict_distr
  # Return a relative risk ranking with type = "risk"
  predict(fit, newdata = test, type = "risk")
  # Or survival probabilities and a rank
  predict(fit, newdata = test, type = "all", distr6 = TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.