#' Computes the log-likelihood of the Tesor Normal for each model estimate.
#'
#' Computes the log-likelihood of the Tesor Normal for each model estimate
#' given a sample of tensors.
#'
#' @param modelList A list of lists. The outer list is indexed by model. The
#' inner list is indexed by Matrix.
#' @param tensors A list with the sample of tensors
#'
#' @return A vector with the log-likelihood for each model.
#'
#' @author Rene Gutierrez Marquez
#'
#' @export
###############################################################################
###
### Performance Statistics Graph
###
###
###############################################################################
### Number
modComLik <- function(modelList, tensors){
### Number of Models
numMod <- length(modelList)
logLik <- numeric()
for(model in modelList){
logLik <- c(logLik, logLikTNorm(tensors = tensors,
precisions = model))
}
### Return
return(logLik)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.