## read in the ouranos data
library(tidyverse)
# ouranos metadata -- inferred from reading Claire's script in tableau-explo-sites
# rcp45 and rcp 85 are actually the minimum and maximum of predictions -- not different scenarios
# get ouranos data
filenames <- dir("data-raw/data_ouranos/", full.names = TRUE, pattern = "csv$") %>%
set_names(nm = basename(.))
# read in all the files
ff <- filenames %>%# head %>%
map_df(read_csv,.id = "fn",col_types = cols(
Annee = col_double(),
Obs = col_double(),
`Hist-Min` = col_double(),
`Hist-Max` = col_double(),
`rcp45-Min` = col_double(),
`rcp45-Avg` = col_double(),
`rcp45-Max` = col_double(),
`rcp85-Min` = col_double(),
`rcp85-Avg` = col_double(),
`rcp85-Max` = col_double()
))
# split up the location and variable names
separate_names <- ff %>%
separate(fn, into = c("region", "var"),
sep = "-Moyenne annuelle des |-Total annuel des ") %>%
mutate(var = var %>% str_replace(" .csv", ""))
# splitting and cleaning data ---------------------------------------------
# visualize what is missing
separate_names %>%
filter(var %>% str_detect("tation"))
# precip??
visdat::vis_dat(separate_names)
separate_names %>% head(1000) %>%
visdat::vis_dat(.)
separate_names %>% slice(62:67) %>% visdat::vis_dat(.)
# ok so observations stop at 2014
# ouranos observations ---------------------------------------------------
# create one table just for observations -- drop any that don't have an "obs" value
ouranos_observed <- separate_names %>%
select(region:`Hist-Max`) %>%
filter(!is.na(Obs))
ouranos_observed %>% glimpse %>%
ggplot(aes(x = Annee,
y = Obs,
ymin = `Hist-Min`,
ymax = `Hist-Max`,
group = region)) +
geom_line(alpha = 0.4) + geom_ribbon(alpha = 0.1)+
facet_wrap(~var, scales = "free_y")
usethis::use_data(ouranos_observed)
# ouranos rcp ------------------------------------------------------------
# now look at the rcp values separately
ouranos_rcp <- separate_names %>%
filter(!is.na(`rcp45-Min`)) %>%
select(region, var, Annee, `rcp45-Min`:`rcp85-Max`) %>%
pivot_longer(`rcp45-Min`:`rcp85-Max`) %>%
separate(name, into = c("rcp", "v")) %>%
pivot_wider(names_from = v, values_from = value)
project_plot <- ouranos_rcp %>%
filter(str_detect(var, "temp"), str_detect(region, "Abi")) %>%
ggplot(aes(x = Annee, y = Avg, colour = rcp, fill = rcp, ymin = Min, ymax = Max)) +
geom_line() + facet_wrap(~region) + geom_ribbon(alpha = 0.1)
project_plot +
geom_line(aes(x = Annee, y = Obs),inherit.aes = FALSE, data = obs_data %>%
filter(str_detect(var, "temp"), str_detect(region, "Abi")))
usethis::use_data(ouranos_rcp)
# ouranos regions --------------------------------------------------------
# do I need to do something with the geojson from ouranos??? probably
regions_simplified_Ouranos <- geojsonio::geojson_sf("data-raw//data_ouranos/regions_simplified_Ouranos.geojson")
library(leaflet)
leaflet(regions_simplified_Ouranos) %>%
addTiles() %>% # Affichage du fond de carte
addPolygons(color = "darkblue")
usethis::use_data(regions_simplified_Ouranos)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.