The amount of methods implemented in this package can be overwhelming at first, making one wonder which method should be used. This small vignette exists to make this choice a little easier by providing a concise overview of the functionality of each method implemented in the adjustedsurv()
and adjustedcif()
functions. Note that this vignette does not contain a description of how these methods work or when. Information about that can be found in Denz et al. (2023) or the respective documentation pages and the cited literature therein.
adjustedsurv()
The following table gives a general overview of all supported methods in adjustedsurv()
:
tab <- data.frame( method=c('"direct"', '"direct_pseudo"', '"iptw_km"', '"iptw_cox"', '"iptw_pseudo"', '"matching"', '"emp_lik"', '"aiptw"', '"aiptw_pseudo"', '"tmle"', '"strat_amato"', '"strat_nieto"', '"strat_cupples"', '"iv_2SRIF"', '"prox_iptw"', '"prox_aiptw"', '"km"'), supp_unmeasured=c(rep("no", 13), rep("yes", 3), "no"), supp_categorical=c(rep("yes", 5), rep("no", 3), "yes", "no", rep("yes", 3), "no", "no", "no", "yes"), supp_continuous_conf=c(rep("yes", 10), rep("no", 3), rep("yes", 3), "no"), supp_approx_var=c("yes", "no", "yes", "no", "yes", "no", "no", "yes", "yes", "yes", "no", "yes", "no", "no", "yes", "yes", "yes"), bounds=c(rep("yes", 4), "no", "yes", "yes", "no", "no", "yes", "yes", "yes", "yes", "yes", "no", "no", "yes"), monotonic=c("yes", "no", "yes", "yes", "no", "yes", "yes", "no", "no", "yes", "yes", "yes", "yes", "yes", "no", "no", "yes"), doubly_robust=c(rep("no", 7), "yes", "yes", "yes", rep("no", 5), "yes", "no"), dependent_censoring=c("no", "yes", "(no)", "(no)", "yes", "no", "no", "yes", "yes", "yes", "no", "no", "no", "no", "no", "no", "no"), type=c("outcome", "outcome", "treatment", "treatment", "treatment", "treatment", "treatment", "both", "both", "both", "-", "-", "-", "-", "treatment", "both", "none"), nonpara=c("no", "no", "depends", "depends", "depends", "depends", "yes", "no", "no", "no", "yes", "yes", "yes", "no", "no", "no", "yes"), speed=c("+", "- -", "++", "++", "-", "-", "+", "-", "- -", "- - -", "+++", "+++", "+++", "+", "- -", "- -", "+++"), dependencies=c("riskRegression", "geepack, prodlim", "-", "-", "prodlim", "Matching", "MASS", "riskRegression", "geepack, prodlim", "concrete", "-", "-", "-", "-", "numDeriv", "numDeriv", "-") ) cnames <- c("Method", "Supports Unmeasured Confounding", "Supports Categorical Treatments", "Supports Continuous Confounders", "Approximate SE available", "Always in Bounds", "Always non-increasing", "Doubly-Robust", "Supports Dependent Censoring", "Type of Adjustment", "Is Nonparametric", "Computation Speed", "Dependencies") tab <- subset(tab, method!='"tmle"') knitr::kable(tab, col.names=cnames)
For methods "iptw_km"
and "iptw_cox"
we wrote "(no)" in whether they support dependent censoring, because there is no direct implementation to handle it in this package. By supplying inverse probability of censoring weights to the treatment_model
argument it is, however, possible to use those estimators to adjust for dependent censoring as well. If both inverse probability of treatment (or more general covariate balancing weights) and inverse probability of censoring weights should be used, the user can simply multiply the subject-level weights and supply the results to the treatment_model
argument.
The following table gives an overview of the supported input to the treatment_model
argument for methods that require it:
tab <- data.frame( method=c('"iptw_km"', '"iptw_cox"', '"iptw_pseudo"', '"matching"', '"aiptw"', '"aiptw_pseudo"', '"tmle"'), allows=c("glm or multinom object, weights, formula for weightit()", "glm or multinom object, weights, formula for weightit()", "glm or multinom object, weights, formula for weightit()", "glm object or propensity scores", "glm object", "glm or multinom object or propensity scores", "vector of SuperLearner libraries") ) tab <- subset(tab, method!='"tmle"') knitr::kable(tab, col.names=c("Method", "Allowed Input to treatment_model argument"))
After having created an adjustedsurv
object using the adjustedsurv()
function, the following functions can be used to create plots, transform the output or calculate further statistics:
plot()
: Plots the estimated adjusted survival curvesadjusted_curve_diff()
: Calculates differences in survival probabilitiesadjusted_curve_ratio()
: Calculates ratios of survival probabilitiesplot_curve_diff()
: Plots differences in survival probabilitiesplot_curve_ratio()
: Plots ratios of survival probabilitiesadjusted_surv_quantile()
: Calculates adjusted survival time quantilesadjusted_rmst()
: Calculates adjusted restricted mean survival timesplot_rmst_curve()
: Plots adjusted restricted mean survival time curvesadjusted_rmtl()
: Calculates adjusted restricted mean time lostplot_rmtl_curve()
: Plots adjusted restricted mean time lost curvesadjusted_curve_test()
: Performs a test of adjusted survival curve equality in an intervalas_ggsurvplot_df()
: Transforms the output to a concise data.frame
adjustedcif()
The following table gives a general overview of all supported methods in adjustedcif()
:
tab <- data.frame( method=c('"direct"', '"direct_pseudo"', '"iptw"', '"iptw_pseudo"', '"matching"', '"aiptw"', '"aiptw_pseudo"', '"tmle"', '"aalen_johansen"'), supp_unmeasured="no", supp_categorical=c("yes", "yes", "yes", "yes", "no", "no", "yes", "no", "yes"), supp_continuous_conf=c(rep("yes", 8), "no"), supp_approx_var=c("yes", "no", "yes", "yes", "no", "yes", "yes", "yes", "yes"), bounds=c("yes", "yes", "yes", "no", "yes", "no", "no", "yes", "yes"), monotonic=c("yes", "no", "yes", "no", "yes", "no", "no", "yes", "yes"), doubly_robust=c("no", "no", "no", "no", "no", "yes", "yes", "yes", "no"), dependent_censoring=c("no", "no", "yes", "no", "no", "yes", "no", "yes", "no"), type=c("outcome", "outcome", "treatment", "treatment", "treatment", "both", "both", "both", "none"), non_parametric=c("no", "no", "no", "depends", "depends", "no", "no", "no", "yes"), speed=c("+", "- -", "+", "+", "-", "-", "- -", "- - -", "++"), dependencies=c("riskRegression", "geepack, prodlim", "riskRegression", "prodlim", "Matching", "riskRegression", "geepack, prodlim", "concrete", "cmprsk") ) cnames <- c("Method", "Supports Unmeasured Confounding", "Supports Categorical Treatments", "Supports Continuous Confounders", "Approximate SE available", "Always in Bounds", "Always non-increasing", "Doubly-Robust", "Supports Dependent Censoring", "Type of Adjustment", "Is Nonparametric", "Computation Speed", "Dependencies") tab <- subset(tab, method!='"tmle"') knitr::kable(tab, col.names=cnames)
The following table gives an overview of the supported input to the treatment_model
argument for methods that require it:
tab <- data.frame( method=c('"iptw"', '"iptw_pseudo"', '"matching"', '"aiptw"', '"aiptw_pseudo"', '"tmle"'), allows=c("glm or multinom object", "glm or multinom object, weights, formula for weightit()", "glm object or propensity scores", "glm object", "glm or multinom object or propensity scores", "vector of SuperLearner libraries") ) tab <- subset(tab, method!='"tmle"') knitr::kable(tab, col.names=c("Method", "Allowed Input to treatment_model argument"))
Note that method "iptw"
currently does not support directly supplying weights or propensity scores. This is due to it relying on the ate
function of the riskRegression
package, which only accepts glm or multinom objects. This may be changed in the future.
After having created an adjustedcif
object using the adjustedcif()
function, the following functions can be used to create plots, transform the output or calculate further statistics:
plot()
: Plots the estimated adjusted CIFsadjusted_curve_diff()
: Calculates differences in CIFsadjusted_curve_ratio()
: Calculates ratios of CIFsplot_curve_diff()
: Plots differences in CIFs over timeplot_curve_ratio()
: Plots ratios of survival probabilitiesadjusted_rmtl()
: Calculates adjusted restricted mean time lostplot_rmtl_curve()
: Plots adjusted restricted mean time lost curvesadjusted_curve_test()
: Performs a test of adjusted CIF equality in an intervalRobin Denz, Renate Klaaßen-Mielke, and Nina Timmesfeld (2023). "A Comparison of Different Methods to Adjust Survival Curves for Confounders". In: Statistics in Medicine 42.10, pp. 1461-1479
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.