knitr::opts_chunk$set(echo = TRUE)
First we have to load the separated data matrices we need. The data matrices are prepared sourcing the "Loading_data.R" file in the Auxiliary Scripts folder.
library(AtlanticForestMetacommunity) source("Loading_data.R")
devtools::load_all() source("C:/Users/rodol/OneDrive/Trabalho/Papers/Analysis/AtlanticForestMetacommunity/Auxiliary Scripts/Loading_data.R")
The used packages to run this analysis are:
vegan
version 2.5-6
ade4
version 1.7-15
adespatial
version 0.3-8
library(vegan) library(ade4) library(adespatial)
\
\
\
\
Constructing Spatial matrix (same as in the varpart file)
set.seed(3, sample.kind = "default") candidates_Broad <- listw.candidates(Broad_coord, style = "B", nb = c("del", "gab", "rel", "pcnm"), weights = c("flin", "fup"), y_fdown = 5, y_fup = 0.5) Broad_MEM <- listw.select(Broad_pa, candidates = candidates_Broad, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) Broad_MEM_FS <- Broad_MEM$best$MEM.select adegraphics::s.label(Broad_coord, nb = candidates_Broad[[Broad_MEM$best.id]], pnb.edge.col = "red", main = paste("Broad - ",names(Broad_MEM$best.id)), plot = TRUE, labels = NULL) ################################################################################ candidates_DRF <- listw.candidates(DRF_coord, style = "B", nb = c("del", "gab", "rel", "pcnm"), weights = c("flin", "fup"), y_fdown = 5, y_fup = 0.25) DRF_MEM <- listw.select(DRF_pa, candidates = candidates_DRF, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) DRF_MEM_FS <- DRF_MEM$best$MEM.select adegraphics::s.label(DRF_coord, nb = candidates_DRF[[DRF_MEM$best.id]], pnb.edge.col = "red", main = paste("DRF - ",names(DRF_MEM$best.id)), plot = TRUE, labels = NULL) ################################################################################ candidates_SSF <- listw.candidates(SSF_coord, style = "B", nb = c("del", "gab", "rel", "pcnm"), weights = c("flin", "fup"), y_fdown = 5, y_fup = 0.25) SSF_MEM <- listw.select(SSF_pa, candidates = candidates_SSF, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) SSF_MEM_FS <- SSF_MEM$best$MEM.select adegraphics::s.label(SSF_coord, nb = candidates_SSF[[SSF_MEM$best.id]], pnb.edge.col = "red", main = paste("SSF - ",names(SSF_MEM$best.id)), plot = TRUE, labels = NULL) ################################################################################ #We restricted our options for optimization because of the low statistical power (low replication) that we had at our small spatial scale. We only used linear weights as we do not believe that a exponential decay would make sense at this scale (even relative large distances between sites are actually small). Also We restricted our graph conectivity matrix to only three that yields relatively different scenarios of conectance. Those are the Delauney triangulation, the Relative neighbour and the PCNM ################################################################################ candidates_ITA <- listw.candidates(ITA_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) ITA_MEM <- listw.select(ITA_pa, candidates = candidates_ITA, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) ITA_MEM_FS <- dbmem(ITA_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_BER <- listw.candidates(BER_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) BER_MEM <- listw.select(BER_pa, candidates = candidates_BER, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) BER_MEM_FS <- dbmem(BER_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_UBA <- listw.candidates(UBA_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) UBA_MEM <- listw.select(UBA_pa, candidates = candidates_UBA, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) UBA_MEM_FS <- UBA_MEM$best$MEM.select adegraphics::s.label(UBA_coord, nb = candidates_UBA[[UBA_MEM$best.id]], pnb.edge.col = "red", main = paste("UBA - ",names(UBA_MEM$best.id)), plot = TRUE, labels = NULL) ################################################################################ candidates_ST <- listw.candidates(ST_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) ST_MEM <- listw.select(ST_pa, candidates = candidates_ST, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) ST_MEM_FS <- dbmem(ST_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_IC <- listw.candidates(IC_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) IC_MEM <- listw.select(IC_pa, candidates = candidates_IC, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) IC_MEM_FS <- dbmem(IC_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_NI <- listw.candidates(NI_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) NI_MEM <- listw.select(NI_pa, candidates = candidates_NI, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) adegraphics::s.label(NI_coord, nb = candidates_NI[[NI_MEM$best.id]], pnb.edge.col = "red", main = paste("NI - ",names(NI_MEM$best.id)), plot = TRUE, labels = NULL) NI_MEM_FS <- dbmem(NI_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_MD <- listw.candidates(MD_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) MD_MEM <- listw.select(MD_pa, candidates = candidates_MD, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) MD_MEM_FS <- dbmem(MD_coord, MEM.autocor = c("positive"), silent = TRUE) ################################################################################ candidates_JA <- listw.candidates(JA_coord, style = "B", nb = c("del", "rel", "pcnm"), weights = c("flin")) JA_MEM <- listw.select(JA_pa, candidates = candidates_JA, MEM.autocor = c("positive"), method = c("FWD"), MEM.all = FALSE, nperm = 10000, nperm.global = 10000, alpha = 0.05, p.adjust = TRUE, verbose = FALSE) JA_MEM_FS <- JA_MEM$best$MEM.select adegraphics::s.label(JA_coord, nb = candidates_JA[[JA_MEM$best.id]], pnb.edge.col = "red", main = paste("JA - ",names(JA_MEM$best.id)), plot = TRUE, labels = NULL) ################################################################################
To better understand what are the environmental variables that are important in each fraction, we looked at the RDA plots of environmental variables (local Environment and Climate) both unconstrained alone and constrained by spatial variables, that is, with and without the importance spatially structured variables.
Because here we are not looking at p or R2 values, we are not woried about multicolinearity or overfitting, so we are using all climate and environmental variables.
RDA_env_Broad <- rda(Broad_pa, data.frame(Broad_clim_st, Broad_env_st[,-7])) species_scores_Broad <- scores(RDA_env_Broad, display = c( "species"), scaling = 0, hill = T) loadings_Broad <- scores(RDA_env_Broad, display = c( "bp"), scaling = 0, hill = T) species_scores_Broad <- species_scores_Broad[(species_scores_Broad[,1] > 0.25 | species_scores_Broad[,1] < -0.25) | (species_scores_Broad[,2] > 0.25 | species_scores_Broad[,2] < -0.25) ,] #species_scores_Broad <- species_scores_Broad*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_Broad) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_Broad <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_Broad <- as.matrix(dist(rbind(loadings_Broad,c(0,0))))[11,-11] dists_Broad_prop <- dists_Broad/max(dists_Broad) #for(i in 1:length(col_Broad)){ # col_Broad[i] <- lighten_color((1-dists_Broad_prop[i]),col_Broad[i]) #} par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_env_Broad, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Total Environment") for(i in 1:length(species_scores_Broad[,1])){ #points(species_scores_Broad[i,1], species_scores_Broad[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_Broad[i,1], species_scores_Broad[i,2], labels = rownames(species_scores_Broad)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_Broad[,1])), y0 = rep(0, length(loadings_Broad[,1])), x1 = loadings_Broad[,1], y1 = loadings_Broad[,2], col = col_Broad, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_Broad_prop), arr.width = 0.3*(dists_Broad_prop)) for(i in 1:length(loadings_Broad[,1])){ #points(loadings_Broad[i,1], loadings_Broad[i,2], col = col_Broad[i], pch = 21, cex = ((7*dists_Broad_prop[i])+1), bg = "white", lwd = 3) text(loadings_Broad[i,1]*1.2, loadings_Broad[i,2]*1.2, labels = rownames(loadings_Broad)[i],col = col_Broad[i], cex = (1.4*dists_Broad_prop[i])) } ################################################################################################################################## ################################################################################################################################## ################################################################################################################################## RDA_env_constrained_Broad <- rda(Broad_pa, data.frame(Broad_clim_st, Broad_env_st[,-7]), Broad_MEM_FS) species_scores_Broad <- scores(RDA_env_constrained_Broad, display = c( "species"), scaling = 0, hill = T) loadings_Broad <- scores(RDA_env_constrained_Broad, display = c( "bp"), scaling = 0, hill = T) species_scores_Broad <- species_scores_Broad[(species_scores_Broad[,1] > 0.25 | species_scores_Broad[,1] < -0.25) | (species_scores_Broad[,2] > 0.25 | species_scores_Broad[,2] < -0.25) ,] #species_scores_Broad <- species_scores_Broad*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_Broad) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_Broad <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_Broad <- as.matrix(dist(rbind(loadings_Broad,c(0,0))))[11,-11] dists_Broad_prop <- dists_Broad/max(dists_Broad) #for(i in 1:length(col_Broad)){ # col_Broad[i] <- lighten_color((1-dists_Broad_prop[i]),col_Broad[i]) #} #par(mfrow = c(2,2),mar = c(5, 5, 4, 2)) plot(RDA_env_constrained_Broad, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Spatially Structured Environment") for(i in 1:length(species_scores_Broad[,1])){ #points(species_scores_Broad[i,1], species_scores_Broad[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_Broad[i,1], species_scores_Broad[i,2], labels = rownames(species_scores_Broad)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_Broad[,1])), y0 = rep(0, length(loadings_Broad[,1])), x1 = loadings_Broad[,1], y1 = loadings_Broad[,2], col = col_Broad, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_Broad_prop), arr.width = 0.3*(dists_Broad_prop)) for(i in 1:length(loadings_Broad[,1])){ #points(loadings_Broad[i,1], loadings_Broad[i,2], col = col_Broad[i], pch = 21, cex = ((7*dists_Broad_prop[i])+1), bg = "white", lwd = 3) text(loadings_Broad[i,1]*1.2, loadings_Broad[i,2]*1.2, labels = rownames(loadings_Broad)[i],col = col_Broad[i], cex = (1.4*dists_Broad_prop[i])) }
RDA_env_SSF <- rda(SSF_pa, data.frame(SSF_clim_st, SSF_env_st)) species_scores_SSF <- scores(RDA_env_SSF, display = c( "species"), scaling = 0, hill = T) loadings_SSF <- scores(RDA_env_SSF, display = c( "bp"), scaling = 0, hill = T) species_scores_SSF <- species_scores_SSF[(species_scores_SSF[,1] > 0.25 | species_scores_SSF[,1] < -0.25) | (species_scores_SSF[,2] > 0.25 | species_scores_SSF[,2] < -0.25) ,] #species_scores_SSF <- species_scores_SSF*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_SSF) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_SSF <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_SSF <- as.matrix(dist(rbind(loadings_SSF,c(0,0))))[11,-11] dists_SSF_prop <- dists_SSF/max(dists_SSF) #for(i in 1:length(col_SSF)){ # col_SSF[i] <- lighten_color((1-dists_SSF_prop[i]),col_SSF[i]) #} par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_env_SSF, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "SSF - Total Environment") for(i in 1:length(species_scores_SSF[,1])){ #points(species_scores_SSF[i,1], species_scores_SSF[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_SSF[i,1], species_scores_SSF[i,2], labels = rownames(species_scores_SSF)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_SSF[,1])), y0 = rep(0, length(loadings_SSF[,1])), x1 = loadings_SSF[,1], y1 = loadings_SSF[,2], col = col_SSF, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_SSF_prop), arr.width = 0.3*(dists_SSF_prop)) for(i in 1:length(loadings_SSF[,1])){ #points(loadings_SSF[i,1], loadings_SSF[i,2], col = col_SSF[i], pch = 21, cex = ((7*dists_SSF_prop[i])+1), bg = "white", lwd = 3) text(loadings_SSF[i,1]*1.2, loadings_SSF[i,2]*1.2, labels = rownames(loadings_SSF)[i],col = col_SSF[i], cex = (1.4*dists_SSF_prop[i])) } ################################################################################################################################## ################################################################################################################################## ################################################################################################################################## RDA_env_constrained_SSF <- rda(SSF_pa, data.frame(SSF_clim_st, SSF_env_st), SSF_MEM_FS) species_scores_SSF <- scores(RDA_env_constrained_SSF, display = c( "species"), scaling = 0, hill = T) loadings_SSF <- scores(RDA_env_constrained_SSF, display = c( "bp"), scaling = 0, hill = T) species_scores_SSF <- species_scores_SSF[(species_scores_SSF[,1] > 0.25 | species_scores_SSF[,1] < -0.25) | (species_scores_SSF[,2] > 0.25 | species_scores_SSF[,2] < -0.25) ,] #species_scores_SSF <- species_scores_SSF*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_SSF) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_SSF <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_SSF <- as.matrix(dist(rbind(loadings_SSF,c(0,0))))[11,-11] dists_SSF_prop <- dists_SSF/max(dists_SSF) #for(i in 1:length(col_SSF)){ # col_SSF[i] <- lighten_color((1-dists_SSF_prop[i]),col_SSF[i]) #} #par(mfrow = c(2,2),mar = c(5, 5, 4, 2)) plot(RDA_env_constrained_SSF, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "SSF - Spatially Structured Environment") for(i in 1:length(species_scores_SSF[,1])){ #points(species_scores_SSF[i,1], species_scores_SSF[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_SSF[i,1], species_scores_SSF[i,2], labels = rownames(species_scores_SSF)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_SSF[,1])), y0 = rep(0, length(loadings_SSF[,1])), x1 = loadings_SSF[,1], y1 = loadings_SSF[,2], col = col_SSF, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_SSF_prop), arr.width = 0.3*(dists_SSF_prop)) for(i in 1:length(loadings_SSF[,1])){ #points(loadings_SSF[i,1], loadings_SSF[i,2], col = col_SSF[i], pch = 21, cex = ((7*dists_SSF_prop[i])+1), bg = "white", lwd = 3) text(loadings_SSF[i,1]*1.2, loadings_SSF[i,2]*1.2, labels = rownames(loadings_SSF)[i],col = col_SSF[i], cex = (1.4*dists_SSF_prop[i])) }
RDA_env_DRF <- rda(DRF_pa, data.frame(DRF_clim_st, DRF_env_st)) species_scores_DRF <- scores(RDA_env_DRF, display = c( "species"), scaling = 0, hill = T) loadings_DRF <- scores(RDA_env_DRF, display = c( "bp"), scaling = 0, hill = T) species_scores_DRF <- species_scores_DRF[(species_scores_DRF[,1] > 0.25 | species_scores_DRF[,1] < -0.25) | (species_scores_DRF[,2] > 0.25 | species_scores_DRF[,2] < -0.25) ,] #species_scores_DRF <- species_scores_DRF*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_DRF) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_DRF <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_DRF <- as.matrix(dist(rbind(loadings_DRF,c(0,0))))[11,-11] dists_DRF_prop <- dists_DRF/max(dists_DRF) #for(i in 1:length(col_DRF)){ # col_DRF[i] <- lighten_color((1-dists_DRF_prop[i]),col_DRF[i]) #} par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_env_DRF, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "DRF - Total Environment") for(i in 1:length(species_scores_DRF[,1])){ #points(species_scores_DRF[i,1], species_scores_DRF[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_DRF[i,1], species_scores_DRF[i,2], labels = rownames(species_scores_DRF)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_DRF[,1])), y0 = rep(0, length(loadings_DRF[,1])), x1 = loadings_DRF[,1], y1 = loadings_DRF[,2], col = col_DRF, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_DRF_prop), arr.width = 0.3*(dists_DRF_prop)) for(i in 1:length(loadings_DRF[,1])){ #points(loadings_DRF[i,1], loadings_DRF[i,2], col = col_DRF[i], pch = 21, cex = ((7*dists_DRF_prop[i])+1), bg = "white", lwd = 3) text(loadings_DRF[i,1]*1.2, loadings_DRF[i,2]*1.2, labels = rownames(loadings_DRF)[i],col = col_DRF[i], cex = (1.4*dists_DRF_prop[i])) } ################################################################################################################################## ################################################################################################################################## ################################################################################################################################## RDA_env_constrained_DRF <- rda(DRF_pa, data.frame(DRF_clim_st, DRF_env_st), DRF_MEM_FS) species_scores_DRF <- scores(RDA_env_constrained_DRF, display = c( "species"), scaling = 0, hill = T) loadings_DRF <- scores(RDA_env_constrained_DRF, display = c( "bp"), scaling = 0, hill = T) species_scores_DRF <- species_scores_DRF[(species_scores_DRF[,1] > 0.25 | species_scores_DRF[,1] < -0.25) | (species_scores_DRF[,2] > 0.25 | species_scores_DRF[,2] < -0.25) ,] #species_scores_DRF <- species_scores_DRF*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_DRF) <- c("TS","RT","TP","PS","HYD","CC","ARE","DEP","VH","FOR") col_DRF <- c("brown1","brown1","brown1","brown1","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_DRF <- as.matrix(dist(rbind(loadings_DRF,c(0,0))))[11,-11] dists_DRF_prop <- dists_DRF/max(dists_DRF) #for(i in 1:length(col_DRF)){ # col_DRF[i] <- lighten_color((1-dists_DRF_prop[i]),col_DRF[i]) #} #par(mfrow = c(2,2),mar = c(5, 5, 4, 2)) plot(RDA_env_constrained_DRF, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "DRF - Spatially Structured Environment") for(i in 1:length(species_scores_DRF[,1])){ #points(species_scores_DRF[i,1], species_scores_DRF[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_DRF[i,1], species_scores_DRF[i,2], labels = rownames(species_scores_DRF)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_DRF[,1])), y0 = rep(0, length(loadings_DRF[,1])), x1 = loadings_DRF[,1], y1 = loadings_DRF[,2], col = col_DRF, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_DRF_prop), arr.width = 0.3*(dists_DRF_prop)) for(i in 1:length(loadings_DRF[,1])){ #points(loadings_DRF[i,1], loadings_DRF[i,2], col = col_DRF[i], pch = 21, cex = ((7*dists_DRF_prop[i])+1), bg = "white", lwd = 3) text(loadings_DRF[i,1]*1.2, loadings_DRF[i,2]*1.2, labels = rownames(loadings_DRF)[i],col = col_DRF[i], cex = (1.4*dists_DRF_prop[i])) }
#SANTA FÈ DO SUL RDA_clim_ST <- rda(ST_pa, data.frame(ST_env_st)) species_scores_ST <- scores(RDA_clim_ST, display = c( "species"), scaling = 0, hill = T) loadings_ST <- scores(RDA_clim_ST, display = c( "bp"), scaling = 0, hill = T) species_scores_ST <- species_scores_ST[(species_scores_ST[,1] > 0.25 | species_scores_ST[,1] < -0.25) | (species_scores_ST[,2] > 0.25 | species_scores_ST[,2] < -0.25) ,] species_scores_ST <- species_scores_ST*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_ST) <- c("HYD","ARE","DEP","VH","FOR") col_ST <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_ST <- as.matrix(dist(rbind(loadings_ST,c(0,0))))[6,-6] dists_ST_prop <- dists_ST/max(dists_ST) for(i in 1:length(col_ST)){ col_ST[i] <- lighten_color((1-dists_ST_prop[i]),col_ST[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_ST, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Santa Fé do Sul - Total Env.") for(i in 1:length(species_scores_ST[,1])){ #points(species_scores_ST[i,1], species_scores_ST[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_ST[i,1], species_scores_ST[i,2], labels = rownames(species_scores_ST)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_ST[,1])), y0 = rep(0, length(loadings_ST[,1])), x1 = loadings_ST[,1], y1 = loadings_ST[,2], col = col_ST, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_ST_prop), arr.width = 0.3*(dists_ST_prop)) for(i in 1:length(loadings_ST[,1])){ #points(loadings_ST[i,1], loadings_ST[i,2], col = col_ST[i], pch = 21, cex = ((7*dists_ST_prop[i])+1), bg = "white", lwd = 3) text(loadings_ST[i,1]*1.25, loadings_ST[i,2]*1.25, labels = rownames(loadings_ST)[i],col = col_ST[i], cex = (1.4*dists_ST_prop[i])) } ################################################################################################################################## RDA_clim_ST <- rda(ST_pa, data.frame(ST_env_st), data.frame(ST_MEM_FS)) species_scores_ST <- scores(RDA_clim_ST, display = c( "species"), scaling = 0, hill = T) loadings_ST <- scores(RDA_clim_ST, display = c( "bp"), scaling = 0, hill = T) species_scores_ST <- species_scores_ST[(species_scores_ST[,1] > 0.25 | species_scores_ST[,1] < -0.25) | (species_scores_ST[,2] > 0.25 | species_scores_ST[,2] < -0.25) ,] species_scores_ST <- species_scores_ST*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_ST) <- c("HYD","ARE","DEP","VH","FOR") col_ST <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_ST <- as.matrix(dist(rbind(loadings_ST,c(0,0))))[6,-6] dists_ST_prop <- dists_ST/max(dists_ST) for(i in 1:length(col_ST)){ col_ST[i] <- lighten_color((1-dists_ST_prop[i]),col_ST[i]) } #par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_ST, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Santa Fé do Sul - Spatially Struc. Env.") for(i in 1:length(species_scores_ST[,1])){ #points(species_scores_ST[i,1], species_scores_ST[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_ST[i,1], species_scores_ST[i,2], labels = rownames(species_scores_ST)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_ST[,1])), y0 = rep(0, length(loadings_ST[,1])), x1 = loadings_ST[,1], y1 = loadings_ST[,2], col = col_ST, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_ST_prop), arr.width = 0.3*(dists_ST_prop)) for(i in 1:length(loadings_ST[,1])){ #points(loadings_ST[i,1], loadings_ST[i,2], col = col_ST[i], pch = 21, cex = ((7*dists_ST_prop[i])+1), bg = "white", lwd = 3) text(loadings_ST[i,1]*1.25, loadings_ST[i,2]*1.25, labels = rownames(loadings_ST)[i],col = col_ST[i], cex = (1.4*dists_ST_prop[i])) }
#ICÉM RDA_clim_IC <- rda(IC_pa, data.frame(IC_env_st)) species_scores_IC <- scores(RDA_clim_IC, display = c( "species"), scaling = 0, hill = T) loadings_IC <- scores(RDA_clim_IC, display = c( "bp"), scaling = 0, hill = T) species_scores_IC <- species_scores_IC[(species_scores_IC[,1] > 0.25 | species_scores_IC[,1] < -0.25) | (species_scores_IC[,2] > 0.25 | species_scores_IC[,2] < -0.25) ,] species_scores_IC <- species_scores_IC*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_IC) <- c("HYD","ARE","DEP","VH","FOR") col_IC <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_IC <- as.matrix(dist(rbind(loadings_IC,c(0,0))))[6,-6] dists_IC_prop <- dists_IC/max(dists_IC) for(i in 1:length(col_IC)){ col_IC[i] <- lighten_color((1-dists_IC_prop[i]),col_IC[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_IC, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Icém - Total Env.") for(i in 1:length(species_scores_IC[,1])){ #points(species_scores_IC[i,1], species_scores_IC[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_IC[i,1], species_scores_IC[i,2], labels = rownames(species_scores_IC)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_IC[,1])), y0 = rep(0, length(loadings_IC[,1])), x1 = loadings_IC[,1], y1 = loadings_IC[,2], col = col_IC, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_IC_prop), arr.width = 0.3*(dists_IC_prop)) for(i in 1:length(loadings_IC[,1])){ #points(loadings_IC[i,1], loadings_IC[i,2], col = col_IC[i], pch = 21, cex = ((7*diICs_IC_prop[i])+1), bg = "white", lwd = 3) text(loadings_IC[i,1]*1.25, loadings_IC[i,2]*1.25, labels = rownames(loadings_IC)[i],col = col_IC[i], cex = (1.4*dists_IC_prop[i])) } ################################################################################################################################## RDA_clim_IC <- rda(IC_pa, data.frame(IC_env_st), data.frame(IC_MEM_FS)) species_scores_IC <- scores(RDA_clim_IC, display = c( "species"), scaling = 0, hill = T) loadings_IC <- scores(RDA_clim_IC, display = c( "bp"), scaling = 0, hill = T) species_scores_IC <- species_scores_IC[(species_scores_IC[,1] > 0.25 | species_scores_IC[,1] < -0.25) | (species_scores_IC[,2] > 0.25 | species_scores_IC[,2] < -0.25) ,] species_scores_IC <- species_scores_IC*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_IC) <- c("HYD","ARE","DEP","VH","FOR") col_IC <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_IC <- as.matrix(dist(rbind(loadings_IC,c(0,0))))[6,-6] dists_IC_prop <- dists_IC/max(dists_IC) for(i in 1:length(col_IC)){ col_IC[i] <- lighten_color((1-dists_IC_prop[i]),col_IC[i]) } plot(RDA_clim_IC, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Icém - Spatially Struc. Env.") for(i in 1:length(species_scores_IC[,1])){ #points(species_scores_IC[i,1], species_scores_IC[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_IC[i,1], species_scores_IC[i,2], labels = rownames(species_scores_IC)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_IC[,1])), y0 = rep(0, length(loadings_IC[,1])), x1 = loadings_IC[,1], y1 = loadings_IC[,2], col = col_IC, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_IC_prop), arr.width = 0.3*(dists_IC_prop)) for(i in 1:length(loadings_IC[,1])){ #points(loadings_IC[i,1], loadings_IC[i,2], col = col_IC[i], pch = 21, cex = ((7*diICs_IC_prop[i])+1), bg = "white", lwd = 3) text(loadings_IC[i,1]*1.25, loadings_IC[i,2]*1.25, labels = rownames(loadings_IC)[i],col = col_IC[i], cex = (1.4*dists_IC_prop[i])) }
#NOVA ITAPIREMA RDA_clim_NI <- rda(NI_pa, data.frame(NI_env_st)) species_scores_NI <- scores(RDA_clim_NI, display = c( "species"), scaling = 0, hill = T) loadings_NI <- scores(RDA_clim_NI, display = c( "bp"), scaling = 0, hill = T) species_scores_NI <- species_scores_NI[(species_scores_NI[,1] > 0.25 | species_scores_NI[,1] < -0.25) | (species_scores_NI[,2] > 0.25 | species_scores_NI[,2] < -0.25) ,] species_scores_NI <- species_scores_NI*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_NI) <- c("HYD","ARE","DEP","VH","FOR") col_NI <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_NI <- as.matrix(dist(rbind(loadings_NI,c(0,0))))[6,-6] dists_NI_prop <- dists_NI/max(dists_NI) for(i in 1:length(col_NI)){ col_NI[i] <- lighten_color((1-dists_NI_prop[i]),col_NI[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_NI, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Nova Itapirema - Total Env.") for(i in 1:length(species_scores_NI[,1])){ #points(species_scores_NI[i,1], species_scores_NI[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_NI[i,1], species_scores_NI[i,2], labels = rownames(species_scores_NI)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_NI[,1])), y0 = rep(0, length(loadings_NI[,1])), x1 = loadings_NI[,1], y1 = loadings_NI[,2], col = col_NI, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_NI_prop), arr.width = 0.3*(dists_NI_prop)) for(i in 1:length(loadings_NI[,1])){ #points(loadings_NI[i,1], loadings_NI[i,2], col = col_NI[i], pch = 21, cex = ((7*diNIs_NI_prop[i])+1), bg = "white", lwd = 3) text(loadings_NI[i,1]*1.25, loadings_NI[i,2]*1.25, labels = rownames(loadings_NI)[i],col = col_NI[i], cex = (1.4*dists_NI_prop[i])) } ################################################################################################################################## RDA_clim_NI <- rda(NI_pa, data.frame(NI_env_st), data.frame(NI_MEM_FS)) species_scores_NI <- scores(RDA_clim_NI, display = c( "species"), scaling = 0, hill = T) loadings_NI <- scores(RDA_clim_NI, display = c( "bp"), scaling = 0, hill = T) species_scores_NI <- species_scores_NI[(species_scores_NI[,1] > 0.25 | species_scores_NI[,1] < -0.25) | (species_scores_NI[,2] > 0.25 | species_scores_NI[,2] < -0.25) ,] species_scores_NI <- species_scores_NI*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_NI) <- c("HYD","ARE","DEP","VH","FOR") col_NI <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_NI <- as.matrix(dist(rbind(loadings_NI,c(0,0))))[6,-6] dists_NI_prop <- dists_NI/max(dists_NI) for(i in 1:length(col_NI)){ col_NI[i] <- lighten_color((1-dists_NI_prop[i]),col_NI[i]) } plot(RDA_clim_NI, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Nova Itapirema - Spatially Struc. Env.") for(i in 1:length(species_scores_NI[,1])){ #points(species_scores_NI[i,1], species_scores_NI[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_NI[i,1], species_scores_NI[i,2], labels = rownames(species_scores_NI)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_NI[,1])), y0 = rep(0, length(loadings_NI[,1])), x1 = loadings_NI[,1], y1 = loadings_NI[,2], col = col_NI, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_NI_prop), arr.width = 0.3*(dists_NI_prop)) for(i in 1:length(loadings_NI[,1])){ #points(loadings_NI[i,1], loadings_NI[i,2], col = col_NI[i], pch = 21, cex = ((7*diNIs_NI_prop[i])+1), bg = "white", lwd = 3) text(loadings_NI[i,1]*1.25, loadings_NI[i,2]*1.25, labels = rownames(loadings_NI)[i],col = col_NI[i], cex = (1.4*dists_NI_prop[i])) }
#MORRO DO DIABO RDA_clim_MD <- rda(MD_pa, data.frame(MD_env_st)) species_scores_MD <- scores(RDA_clim_MD, display = c( "species"), scaling = 0, hill = T) loadings_MD <- scores(RDA_clim_MD, display = c( "bp"), scaling = 0, hill = T) species_scores_MD <- species_scores_MD[(species_scores_MD[,1] > 0.25 | species_scores_MD[,1] < -0.25) | (species_scores_MD[,2] > 0.25 | species_scores_MD[,2] < -0.25) ,] species_scores_MD <- species_scores_MD*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_MD) <- c("HYD","CC","ARE","DEP","VH","FOR") col_MD <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_MD <- as.matrix(dist(rbind(loadings_MD,c(0,0))))[7,-7] dists_MD_prop <- dists_MD/max(dists_MD) for(i in 1:length(col_MD)){ col_MD[i] <- lighten_color((1-dists_MD_prop[i]),col_MD[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_MD, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Morro do Diabo - Total Env.") for(i in 1:length(species_scores_MD[,1])){ #points(species_scores_MD[i,1], species_scores_MD[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_MD[i,1], species_scores_MD[i,2], labels = rownames(species_scores_MD)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_MD[,1])), y0 = rep(0, length(loadings_MD[,1])), x1 = loadings_MD[,1], y1 = loadings_MD[,2], col = col_MD, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_MD_prop), arr.width = 0.3*(dists_MD_prop)) for(i in 1:length(loadings_MD[,1])){ #points(loadings_MD[i,1], loadings_MD[i,2], col = col_MD[i], pch = 21, cex = ((7*diNIs_MD_prop[i])+1), bg = "white", lwd = 3) text(loadings_MD[i,1]*1.25, loadings_MD[i,2]*1.25, labels = rownames(loadings_MD)[i],col = col_MD[i], cex = (1.4*dists_MD_prop[i])) } ################################################################################################################################## RDA_clim_MD <- rda(MD_pa, data.frame(MD_env_st), data.frame(MD_MEM_FS)) species_scores_MD <- scores(RDA_clim_MD, display = c( "species"), scaling = 0, hill = T) loadings_MD <- scores(RDA_clim_MD, display = c( "bp"), scaling = 0, hill = T) species_scores_MD <- species_scores_MD[(species_scores_MD[,1] > 0.25 | species_scores_MD[,1] < -0.25) | (species_scores_MD[,2] > 0.25 | species_scores_MD[,2] < -0.25) ,] species_scores_MD <- species_scores_MD*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_MD) <- c("HYD","CC","ARE","DEP","VH","FOR") col_MD <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_MD <- as.matrix(dist(rbind(loadings_MD,c(0,0))))[7,-7] dists_MD_prop <- dists_MD/max(dists_MD) for(i in 1:length(col_MD)){ col_MD[i] <- lighten_color((1-dists_MD_prop[i]),col_MD[i]) } plot(RDA_clim_MD, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Morro do Diabo - Spatially Struc. Env.") for(i in 1:length(species_scores_MD[,1])){ #points(species_scores_MD[i,1], species_scores_MD[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_MD[i,1], species_scores_MD[i,2], labels = rownames(species_scores_MD)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_MD[,1])), y0 = rep(0, length(loadings_MD[,1])), x1 = loadings_MD[,1], y1 = loadings_MD[,2], col = col_MD, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_MD_prop), arr.width = 0.3*(dists_MD_prop)) for(i in 1:length(loadings_MD[,1])){ #points(loadings_MD[i,1], loadings_MD[i,2], col = col_MD[i], pch = 21, cex = ((7*diNIs_MD_prop[i])+1), bg = "white", lwd = 3) text(loadings_MD[i,1]*1.25, loadings_MD[i,2]*1.25, labels = rownames(loadings_MD)[i],col = col_MD[i], cex = (1.4*dists_MD_prop[i])) }
#JATAÍ RDA_clim_JA <- rda(JA_pa, data.frame(JA_env_st)) species_scores_JA <- scores(RDA_clim_JA, display = c( "species"), scaling = 0, hill = T) loadings_JA <- scores(RDA_clim_JA, display = c( "bp"), scaling = 0, hill = T) species_scores_JA <- species_scores_JA[(species_scores_JA[,1] > 0.25 | species_scores_JA[,1] < -0.25) | (species_scores_JA[,2] > 0.25 | species_scores_JA[,2] < -0.25) ,] species_scores_JA <- species_scores_JA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_JA) <- c("HYD","CC","ARE","DEP","VH","FOR") col_JA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_JA <- as.matrix(dist(rbind(loadings_JA,c(0,0))))[7,-7] dists_JA_prop <- dists_JA/max(dists_JA) for(i in 1:length(col_JA)){ col_JA[i] <- lighten_color((1-dists_JA_prop[i]),col_JA[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_JA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Jataí - Total Env.") for(i in 1:length(species_scores_JA[,1])){ #points(species_scores_JA[i,1], species_scores_JA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_JA[i,1], species_scores_JA[i,2], labels = rownames(species_scores_JA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_JA[,1])), y0 = rep(0, length(loadings_JA[,1])), x1 = loadings_JA[,1], y1 = loadings_JA[,2], col = col_JA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_JA_prop), arr.width = 0.3*(dists_JA_prop)) for(i in 1:length(loadings_JA[,1])){ #points(loadings_JA[i,1], loadings_JA[i,2], col = col_JA[i], pch = 21, cex = ((7*diNIs_JA_prop[i])+1), bg = "white", lwd = 3) text(loadings_JA[i,1]*1.25, loadings_JA[i,2]*1.25, labels = rownames(loadings_JA)[i],col = col_JA[i], cex = (1.4*dists_JA_prop[i])) } ################################################################################################################################## RDA_clim_JA <- rda(JA_pa, data.frame(JA_env_st), data.frame(JA_MEM_FS)) species_scores_JA <- scores(RDA_clim_JA, display = c( "species"), scaling = 0, hill = T) loadings_JA <- scores(RDA_clim_JA, display = c( "bp"), scaling = 0, hill = T) species_scores_JA <- species_scores_JA[(species_scores_JA[,1] > 0.25 | species_scores_JA[,1] < -0.25) | (species_scores_JA[,2] > 0.25 | species_scores_JA[,2] < -0.25) ,] species_scores_JA <- species_scores_JA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_JA) <- c("HYD","CC","ARE","DEP","VH","FOR") col_JA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_JA <- as.matrix(dist(rbind(loadings_JA,c(0,0))))[7,-7] dists_JA_prop <- dists_JA/max(dists_JA) for(i in 1:length(col_JA)){ col_JA[i] <- lighten_color((1-dists_JA_prop[i]),col_JA[i]) } plot(RDA_clim_JA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Jataí - Spatially Struc. Env.") for(i in 1:length(species_scores_JA[,1])){ #points(species_scores_JA[i,1], species_scores_JA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_JA[i,1], species_scores_JA[i,2], labels = rownames(species_scores_JA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_JA[,1])), y0 = rep(0, length(loadings_JA[,1])), x1 = loadings_JA[,1], y1 = loadings_JA[,2], col = col_JA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_JA_prop), arr.width = 0.3*(dists_JA_prop)) for(i in 1:length(loadings_JA[,1])){ #points(loadings_JA[i,1], loadings_JA[i,2], col = col_JA[i], pch = 21, cex = ((7*diNIs_JA_prop[i])+1), bg = "white", lwd = 3) text(loadings_JA[i,1]*1.25, loadings_JA[i,2]*1.25, labels = rownames(loadings_JA)[i],col = col_JA[i], cex = (1.4*dists_JA_prop[i])) }
#UBATUBA RDA_clim_UBA <- rda(UBA_pa, data.frame(UBA_env_st)) species_scores_UBA <- scores(RDA_clim_UBA, display = c( "species"), scaling = 0, hill = T) loadings_UBA <- scores(RDA_clim_UBA, display = c( "bp"), scaling = 0, hill = T) species_scores_UBA <- species_scores_UBA[(species_scores_UBA[,1] > 0.25 | species_scores_UBA[,1] < -0.25) | (species_scores_UBA[,2] > 0.25 | species_scores_UBA[,2] < -0.25) ,] species_scores_UBA <- species_scores_UBA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_UBA) <- c("HYD","CC","ARE","DEP","FOR") col_UBA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_UBA <- as.matrix(dist(rbind(loadings_UBA,c(0,0))))[6,-6] dists_UBA_prop <- dists_UBA/max(dists_UBA) for(i in 1:length(col_UBA)){ col_UBA[i] <- lighten_color((1-dists_UBA_prop[i]),col_UBA[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_UBA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Ubatuba - Total Env.") for(i in 1:length(species_scores_UBA[,1])){ #points(species_scores_UBA[i,1], species_scores_UBA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_UBA[i,1], species_scores_UBA[i,2], labels = rownames(species_scores_UBA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_UBA[,1])), y0 = rep(0, length(loadings_UBA[,1])), x1 = loadings_UBA[,1], y1 = loadings_UBA[,2], col = col_UBA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_UBA_prop), arr.width = 0.3*(dists_UBA_prop)) for(i in 1:length(loadings_UBA[,1])){ #points(loadings_UBA[i,1], loadings_UBA[i,2], col = col_UBA[i], pch = 21, cex = ((7*diNIs_UBA_prop[i])+1), bg = "white", lwd = 3) text(loadings_UBA[i,1]*1.25, loadings_UBA[i,2]*1.25, labels = rownames(loadings_UBA)[i],col = col_UBA[i], cex = (1.4*dists_UBA_prop[i])) } ################################################################################################################################## RDA_clim_UBA <- rda(UBA_pa, data.frame(UBA_env_st), data.frame(UBA_MEM_FS)) species_scores_UBA <- scores(RDA_clim_UBA, display = c( "species"), scaling = 0, hill = T) loadings_UBA <- scores(RDA_clim_UBA, display = c( "bp"), scaling = 0, hill = T) species_scores_UBA <- species_scores_UBA[(species_scores_UBA[,1] > 0.25 | species_scores_UBA[,1] < -0.25) | (species_scores_UBA[,2] > 0.25 | species_scores_UBA[,2] < -0.25) ,] species_scores_UBA <- species_scores_UBA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_UBA) <- c("HYD","CC","ARE","DEP","FOR") col_UBA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_UBA <- as.matrix(dist(rbind(loadings_UBA,c(0,0))))[6,-6] dists_UBA_prop <- dists_UBA/max(dists_UBA) for(i in 1:length(col_UBA)){ col_UBA[i] <- lighten_color((1-dists_UBA_prop[i]),col_UBA[i]) } plot(RDA_clim_UBA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Ubatuba - Spatially Struc. Env.") for(i in 1:length(species_scores_UBA[,1])){ #points(species_scores_UBA[i,1], species_scores_UBA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_UBA[i,1], species_scores_UBA[i,2], labels = rownames(species_scores_UBA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_UBA[,1])), y0 = rep(0, length(loadings_UBA[,1])), x1 = loadings_UBA[,1], y1 = loadings_UBA[,2], col = col_UBA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_UBA_prop), arr.width = 0.3*(dists_UBA_prop)) for(i in 1:length(loadings_UBA[,1])){ #points(loadings_UBA[i,1], loadings_UBA[i,2], col = col_UBA[i], pch = 21, cex = ((7*diNIs_UBA_prop[i])+1), bg = "white", lwd = 3) text(loadings_UBA[i,1]*1.25, loadings_UBA[i,2]*1.25, labels = rownames(loadings_UBA)[i],col = col_UBA[i], cex = (1.4*dists_UBA_prop[i])) }
#BERTIOGA RDA_clim_BER <- rda(BER_pa, data.frame(BER_env_st)) species_scores_BER <- scores(RDA_clim_BER, display = c( "species"), scaling = 0, hill = T) loadings_BER <- scores(RDA_clim_BER, display = c( "bp"), scaling = 0, hill = T) species_scores_BER <- species_scores_BER[(species_scores_BER[,1] > 0.25 | species_scores_BER[,1] < -0.25) | (species_scores_BER[,2] > 0.25 | species_scores_BER[,2] < -0.25) ,] species_scores_BER <- species_scores_BER*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_BER) <- c("HYD","CC","ARE","DEP","FOR") col_BER <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_BER <- as.matrix(dist(rbind(loadings_BER,c(0,0))))[6,-6] dists_BER_prop <- dists_BER/max(dists_BER) for(i in 1:length(col_BER)){ col_BER[i] <- lighten_color((1-dists_BER_prop[i]),col_BER[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_BER, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Bertioga - Total Env.") for(i in 1:length(species_scores_BER[,1])){ #points(species_scores_BER[i,1], species_scores_BER[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_BER[i,1], species_scores_BER[i,2], labels = rownames(species_scores_BER)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_BER[,1])), y0 = rep(0, length(loadings_BER[,1])), x1 = loadings_BER[,1], y1 = loadings_BER[,2], col = col_BER, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_BER_prop), arr.width = 0.3*(dists_BER_prop)) for(i in 1:length(loadings_BER[,1])){ #points(loadings_BER[i,1], loadings_BER[i,2], col = col_BER[i], pch = 21, cex = ((7*diNIs_BER_prop[i])+1), bg = "white", lwd = 3) text(loadings_BER[i,1]*1.25, loadings_BER[i,2]*1.25, labels = rownames(loadings_BER)[i],col = col_BER[i], cex = (1.4*dists_BER_prop[i])) } ################################################################################################################################## RDA_clim_BER <- rda(BER_pa, data.frame(BER_env_st), data.frame(BER_MEM_FS)) species_scores_BER <- scores(RDA_clim_BER, display = c( "species"), scaling = 0, hill = T) loadings_BER <- scores(RDA_clim_BER, display = c( "bp"), scaling = 0, hill = T) species_scores_BER <- species_scores_BER[(species_scores_BER[,1] > 0.25 | species_scores_BER[,1] < -0.25) | (species_scores_BER[,2] > 0.25 | species_scores_BER[,2] < -0.25) ,] species_scores_BER <- species_scores_BER*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_BER) <- c("HYD","CC","ARE","DEP","FOR") col_BER <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_BER <- as.matrix(dist(rbind(loadings_BER,c(0,0))))[6,-6] dists_BER_prop <- dists_BER/max(dists_BER) for(i in 1:length(col_BER)){ col_BER[i] <- lighten_color((1-dists_BER_prop[i]),col_BER[i]) } plot(RDA_clim_BER, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Bertioga - Spatially Struc. Env.") for(i in 1:length(species_scores_BER[,1])){ #points(species_scores_BER[i,1], species_scores_BER[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_BER[i,1], species_scores_BER[i,2], labels = rownames(species_scores_BER)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_BER[,1])), y0 = rep(0, length(loadings_BER[,1])), x1 = loadings_BER[,1], y1 = loadings_BER[,2], col = col_BER, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_BER_prop), arr.width = 0.3*(dists_BER_prop)) for(i in 1:length(loadings_BER[,1])){ #points(loadings_BER[i,1], loadings_BER[i,2], col = col_BER[i], pch = 21, cex = ((7*diNIs_BER_prop[i])+1), bg = "white", lwd = 3) text(loadings_BER[i,1]*1.25, loadings_BER[i,2]*1.25, labels = rownames(loadings_BER)[i],col = col_BER[i], cex = (1.4*dists_BER_prop[i])) }
#ITANHAÉM RDA_clim_ITA <- rda(ITA_pa, data.frame(ITA_env_st)) species_scores_ITA <- scores(RDA_clim_ITA, display = c( "species"), scaling = 0, hill = T) loadings_ITA <- scores(RDA_clim_ITA, display = c( "bp"), scaling = 0, hill = T) species_scores_ITA <- species_scores_ITA[(species_scores_ITA[,1] > 0.25 | species_scores_ITA[,1] < -0.25) | (species_scores_ITA[,2] > 0.25 | species_scores_ITA[,2] < -0.25) ,] species_scores_ITA <- species_scores_ITA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_ITA) <- c("HYD","CC","ARE","DEP","VH") col_ITA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_ITA <- as.matrix(dist(rbind(loadings_ITA,c(0,0))))[6,-6] dists_ITA_prop <- dists_ITA/max(dists_ITA) for(i in 1:length(col_ITA)){ col_ITA[i] <- lighten_color((1-dists_ITA_prop[i]),col_ITA[i]) } par(mfrow = c(1,2),mar = c(5, 5, 4, 2)) plot(RDA_clim_ITA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Itanhaém - Total Env.") for(i in 1:length(species_scores_ITA[,1])){ #points(species_scores_ITA[i,1], species_scores_ITA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_ITA[i,1], species_scores_ITA[i,2], labels = rownames(species_scores_ITA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_ITA[,1])), y0 = rep(0, length(loadings_ITA[,1])), x1 = loadings_ITA[,1], y1 = loadings_ITA[,2], col = col_ITA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_ITA_prop), arr.width = 0.3*(dists_ITA_prop)) for(i in 1:length(loadings_ITA[,1])){ #points(loadings_ITA[i,1], loadings_ITA[i,2], col = col_ITA[i], pch = 21, cex = ((7*diNIs_ITA_prop[i])+1), bg = "white", lwd = 3) text(loadings_ITA[i,1]*1.25, loadings_ITA[i,2]*1.25, labels = rownames(loadings_ITA)[i],col = col_ITA[i], cex = (1.4*dists_ITA_prop[i])) } ################################################################################################################################## RDA_clim_ITA <- rda(ITA_pa, data.frame(ITA_env_st), data.frame(ITA_MEM_FS)) species_scores_ITA <- scores(RDA_clim_ITA, display = c( "species"), scaling = 0, hill = T) loadings_ITA <- scores(RDA_clim_ITA, display = c( "bp"), scaling = 0, hill = T) species_scores_ITA <- species_scores_ITA[(species_scores_ITA[,1] > 0.25 | species_scores_ITA[,1] < -0.25) | (species_scores_ITA[,2] > 0.25 | species_scores_ITA[,2] < -0.25) ,] species_scores_ITA <- species_scores_ITA*1.5 xmin <- -1.2 xmax <- 1.2 ymin <- -1.2 ymax <- 1.2 rownames(loadings_ITA) <- c("HYD","CC","ARE","DEP","VH") col_ITA <- c("forestgreen","forestgreen","forestgreen","forestgreen","forestgreen") dists_ITA <- as.matrix(dist(rbind(loadings_ITA,c(0,0))))[6,-6] dists_ITA_prop <- dists_ITA/max(dists_ITA) for(i in 1:length(col_ITA)){ col_ITA[i] <- lighten_color((1-dists_ITA_prop[i]),col_ITA[i]) } plot(RDA_clim_ITA, type="n", scaling = 2, xlim = c(xmin,xmax), ylim = c(ymin,ymax), cex.lab = 1.5, cex.axis = 1.5, main = "Itanhaém - Spatially Struc. Env.") for(i in 1:length(species_scores_ITA[,1])){ #points(species_scores_ITA[i,1], species_scores_ITA[i,2], col = "white", pch = 21, cex = 5, bg = "grey80", lwd = 1) text(species_scores_ITA[i,1], species_scores_ITA[i,2], labels = rownames(species_scores_ITA)[i],col = "black", cex = 0.8) } shape::Arrows(x0 = rep(0, length(loadings_ITA[,1])), y0 = rep(0, length(loadings_ITA[,1])), x1 = loadings_ITA[,1], y1 = loadings_ITA[,2], col = col_ITA, lwd = 2, arr.type="triangle", arr.length = 0.4*(dists_ITA_prop), arr.width = 0.3*(dists_ITA_prop)) for(i in 1:length(loadings_ITA[,1])){ #points(loadings_ITA[i,1], loadings_ITA[i,2], col = col_ITA[i], pch = 21, cex = ((7*diNIs_ITA_prop[i])+1), bg = "white", lwd = 3) text(loadings_ITA[i,1]*1.25, loadings_ITA[i,2]*1.25, labels = rownames(loadings_ITA)[i],col = col_ITA[i], cex = (1.4*dists_ITA_prop[i])) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.