knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The Visium kidney data to run this tutorial can be found here
library(Giotto) ## create instructions ## instructions allow us to automatically save all plots into a chosen results folder ## Here we will automatically save plots, for an example without automatic saving see the visium brain dataset my_python_path = "/your/python/path/python" results_folder = '/your/results/path/' instrs = createGiottoInstructions(python_path = my_python_path, save_dir = results_folder, show_plot = F, return_plot = T, save_plot = T, plot_format = 'png', dpi = 300, height = 9, width = 9)
10X genomics recently launched a new platform to obtain spatial expression data using a Visium Spatial Gene Expression slide.
{ width=50% }
## expression and cell location ## expression data data_dir = "path/to/Visum_data/" data_path = paste0(data_dir,'raw_feature_bc_matrix/') raw_matrix = get10Xmatrix(path_to_data = data_path, gene_column_index = 2) # gene symbol is in the 2nd column ## spatial locations and metadata spatial_locations = fread(paste0(data_dir,'spatial/tissue_positions_list.csv')) spatial_locations = spatial_locations[match(colnames(raw_matrix), V1)] colnames(spatial_locations) = c('barcode', 'in_tissue', 'array_row', 'array_col', 'col_pxl', 'row_pxl')
High resolution png from original tissue.
{ width=50% }
## we need to reverse the column pixel to get the same .jpg image as provided by 10X visium_kidney <- createGiottoObject(raw_exprs = raw_matrix, spatial_locs = spatial_results[,.(row_pxl,-col_pxl)], instructions = instrs, cell_metadata = spatial_results[,.(in_tissue, array_row, array_col)]) ## check metadata pDataDT(visium_kidney) ## compare in tissue with provided jpg spatPlot(gobject = visium_kidney, cell_color = 'in_tissue', point_size = 2, cell_color_code = c('0' = 'lightgrey', '1' = 'blue'), save_param = list(save_name = '2_in_tissue'))
{ width=50% }
## subset on spots that were covered by tissue metadata = pDataDT(visium_kidney) in_tissue_barcodes = metadata[in_tissue == 1]$cell_ID visium_kidney = subsetGiotto(visium_kidney, cell_ids = in_tissue_barcodes) ## filter visium_kidney <- filterGiotto(gobject = visium_kidney, expression_threshold = 1, gene_det_in_min_cells = 50, min_det_genes_per_cell = 1000, expression_values = c('raw'), verbose = T) ## normalize visium_kidney <- normalizeGiotto(gobject = visium_kidney, scalefactor = 6000, verbose = T) ## add gene & cell statistics visium_kidney <- addStatistics(gobject = visium_kidney) ## visualize spatPlot2D(gobject = visium_kidney, save_param = list(save_name = '2_spatial_locations'))
{ width=50% }
spatPlot2D(gobject = visium_kidney, cell_color = 'nr_genes', color_as_factor = F, save_param = list(save_name = '2_nr_genes'))
{ width=50% }
## highly variable genes (HVG) visium_kidney <- calculateHVG(gobject = visium_kidney, save_param = list(save_name = '3_HVGplot'))
{ width=50% }
## select genes based on HVG and gene statistics, both found in gene metadata gene_metadata = fDataDT(visium_kidney) featgenes = gene_metadata[hvg == 'yes' & perc_cells > 4 & mean_expr_det > 0.5]$gene_ID ## run PCA on expression values (default) visium_kidney <- runPCA(gobject = visium_kidney, genes_to_use = featgenes, scale_unit = F) signPCA(visium_kidney, genes_to_use = featgenes, scale_unit = F, save_param = list(save_name = '3_screeplot'))
{ width=50% }
plotPCA(gobject = visium_kidney, save_param = list(save_name = '3_PCA_reduction'))
{ width=50% }
## run UMAP and tSNE on PCA space (default) visium_kidney <- runUMAP(visium_kidney, dimensions_to_use = 1:10) plotUMAP(gobject = visium_kidney, save_param = list(save_name = '3_UMAP_reduction'))
{ width=50% }
visium_kidney <- runtSNE(visium_kidney, dimensions_to_use = 1:10) plotTSNE(gobject = visium_kidney, save_param = list(save_name = '3_tSNE_reduction'))
{ width=50% }
## sNN network (default) visium_kidney <- createNearestNetwork(gobject = visium_kidney, dimensions_to_use = 1:10, k = 15) ## Leiden clustering visium_kidney <- doLeidenCluster(gobject = visium_kidney, resolution = 0.4, n_iterations = 1000) plotUMAP(gobject = visium_kidney, cell_color = 'leiden_clus', show_NN_network = T, point_size = 2.5, save_param = list(save_name = '4_UMAP_leiden'))
{ width=50% }
# expression and spatial spatDimPlot(gobject = visium_kidney, cell_color = 'leiden_clus', dim_point_size = 2, spat_point_size = 2.5, save_param = list(save_name = '5_covis_leiden'))
{ width=50% }
spatDimPlot(gobject = visium_kidney, cell_color = 'nr_genes', color_as_factor = F, dim_point_size = 2, spat_point_size = 2.5, save_param = list(save_name = '5_nr_genes'))
{ width=50% }
## ---- ## gini_markers_subclusters = findMarkers_one_vs_all(gobject = visium_kidney, method = 'gini', expression_values = 'normalized', cluster_column = 'leiden_clus', min_genes = 20, min_expr_gini_score = 0.5, min_det_gini_score = 0.5) topgenes_gini = gini_markers_subclusters[, head(.SD, 2), by = 'cluster']$genes # violinplot violinPlot(visium_kidney, genes = unique(topgenes_gini), cluster_column = 'leiden_clus', strip_text = 8, strip_position = 'right', save_param = c(save_name = '6_violinplot_gini', base_width = 5, base_height = 10))
{ width=50% }
# cluster heatmap my_cluster_order = c(2, 4, 5, 3, 6, 7, 8, 9, 10, 1) plotMetaDataHeatmap(visium_kidney, selected_genes = topgenes_gini, custom_cluster_order = my_cluster_order, metadata_cols = c('leiden_clus'), x_text_size = 10, y_text_size = 10, save_param = c(save_name = '6_metaheatmap_gini'))
{ width=50% }
# umap plots dimGenePlot2D(visium_kidney, expression_values = 'scaled', genes = gini_markers_subclusters[, head(.SD, 1), by = 'cluster']$genes, cow_n_col = 3, point_size = 1, genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue', midpoint = 0, save_param = c(save_name = '6_gini_umap', base_width = 8, base_height = 5))
{ width=50% }
## ----- ## scran_markers_subclusters = findMarkers_one_vs_all(gobject = visium_kidney, method = 'scran', expression_values = 'normalized', cluster_column = 'leiden_clus') topgenes_scran = scran_markers_subclusters[, head(.SD, 2), by = 'cluster']$genes # violinplot violinPlot(visium_kidney, genes = unique(topgenes_scran), cluster_column = 'leiden_clus', strip_text = 10, strip_position = 'right', save_param = c(save_name = '6_violinplot_scran', base_width = 5))
{ width=50% }
# cluster heatmap plotMetaDataHeatmap(visium_kidney, selected_genes = topgenes_scran, custom_cluster_order = my_cluster_order, metadata_cols = c('leiden_clus'), save_param = c(save_name = '6_metaheatmap_scran'))
{ width=50% }
# umap plots dimGenePlot(visium_kidney, expression_values = 'scaled', genes = scran_markers_subclusters[, head(.SD, 1), by = 'cluster']$genes, cow_n_col = 3, point_size = 1, genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue', midpoint = 0, save_param = c(save_name = '6_scran_umap', base_width = 8, base_height = 5))
{ width=50% }
Visium spatial transcriptomics does not provide single-cell resolution, making cell type annotation a harder problem. Giotto provides 3 ways to calculate enrichment of specific cell-type signature gene list:
- PAGE
- rank
- hypergeometric test
See the mouse Visium brain dataset for an example.
visium_kidney <- createSpatialGrid(gobject = visium_kidney, sdimx_stepsize = 400, sdimy_stepsize = 400, minimum_padding = 0) spatPlot(visium_kidney, cell_color = 'leiden_clus', show_grid = T, grid_color = 'red', spatial_grid_name = 'spatial_grid', save_param = c(save_name = '8_grid'))
{ width=50% }
## (default) delaunay network: stats + creation plotStatDelaunayNetwork(gobject = visium_kidney, maximum_distance = 400, save_plot = F) visium_kidney = createSpatialNetwork(gobject = visium_kidney, maximum_distance_delaunay = 400, minimum_k = 2) spatPlot(gobject = visium_kidney, show_network = T, network_color = 'blue', spatial_network_name = 'delaunay_network', save_param = c(save_name = '9_delaunay_network'))
{ width=50% }
## kNN network visium_kidney <- createSpatialNetwork(gobject = visium_kidney, method = 'kNN', k = 5, maximum_distance_knn = 400) spatPlot(gobject = visium_kidney, show_network = T, network_color = 'blue', spatial_network_name = 'spatial_network', save_param = c(save_name = '9_spatial_network_k5'))
{ width=50% }
## kmeans binarization kmtest = binSpect(visium_kidney, bin_method = 'kmeans', do_fisher_test = T, spatial_network_name = 'delaunay_network', verbose = T) spatGenePlot(visium_kidney, expression_values = 'scaled', genes = kmtest$genes[1:6], cow_n_col = 2, point_size = 1.5, genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue', midpoint = 0, save_param = c(save_name = '10_spatial_genes_km'))
{ width=50% }
## rank binarization ranktest = binSpect(visium_kidney, bin_method = 'rank', do_fisher_test = T, percentage_rank = 30, spatial_network_name = 'delaunay_network', verbose = T) spatGenePlot(visium_kidney, expression_values = 'scaled', genes = ranktest$genes[1:6], cow_n_col = 2, point_size = 1.5, genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue', midpoint = 0, save_param = c(save_name = '10_spatial_genes_rank'))
{ width=50% }
## silhouette spatial_genes = silhouetteRank(gobject = visium_kidney, expression_values = 'scaled', rbp_p=0.95, examine_top=0.3) spatGenePlot(visium_kidney, expression_values = 'scaled', genes = spatial_genes$genes[1:6], cow_n_col = 2, point_size = 1.5, genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue', midpoint = 0, save_param = c(save_name = '10_spatial_genes'))
{ width=50% }
## spatially correlated genes ## ext_spatial_genes = kmtest[1:500]$genes # 1. calculate gene spatial correlation and single-cell correlation # create spatial correlation object spat_cor_netw_DT = detectSpatialCorGenes(visium_kidney, method = 'network', spatial_network_name = 'delaunay_network', subset_genes = ext_spatial_genes) # 2. identify most similar spatially correlated genes for one gene Napsa_top10_genes = showSpatialCorGenes(spat_cor_netw_DT, genes = 'Napsa', show_top_genes = 10) spatGenePlot(visium_kidney, expression_values = 'scaled', genes = c('Napsa', 'Kap', 'Defb29', 'Prdx1'), point_size = 3, save_param = c(save_name = '10_Napsa_correlated_genes'))
{ width=50% }
# 3. cluster correlated genes & visualize spat_cor_netw_DT = clusterSpatialCorGenes(spat_cor_netw_DT, name = 'spat_netw_clus', k = 8) heatmSpatialCorGenes(visium_kidney, spatCorObject = spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', save_param = c(save_name = '10_heatmap_correlated_genes', save_format = 'pdf', base_height = 6, base_width = 8, units = 'cm'), heatmap_legend_param = list(title = NULL))
{ width=50% }
# 4. rank spatial correlated clusters and show genes for selected clusters netw_ranks = rankSpatialCorGroups(visium_kidney, spatCorObject = spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', save_param = c(save_name = '10_rank_correlated_groups', base_height = 3, base_width = 5))
{ width=50% }
top_netw_spat_cluster = showSpatialCorGenes(spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', selected_clusters = 6, show_top_genes = 1) # 5. create metagene enrichment score for clusters cluster_genes_DT = showSpatialCorGenes(spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', show_top_genes = 1) cluster_genes = cluster_genes_DT$clus; names(cluster_genes) = cluster_genes_DT$gene_ID visium_kidney = createMetagenes(visium_kidney, gene_clusters = cluster_genes, name = 'cluster_metagene') spatCellPlot(visium_kidney, spat_enr_names = 'cluster_metagene', cell_annotation_values = netw_ranks$clusters, point_size = 1.5, cow_n_col = 4, save_param = c(save_name = '10_spat_enrichment_score_plots', base_width = 13, base_height = 6))
{ width=50% }
# example for gene per cluster top_netw_spat_cluster = showSpatialCorGenes(spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', selected_clusters = 1:8, show_top_genes = 1) first_genes = top_netw_spat_cluster[, head(.SD, 1), by = clus]$gene_ID cluster_names = top_netw_spat_cluster[, head(.SD, 1), by = clus]$clus names(first_genes) = cluster_names first_genes = first_genes[as.character(netw_ranks$clusters)] spatGenePlot(visium_kidney, genes = first_genes, expression_values = 'scaled', cow_n_col = 4, midpoint = 0, point_size = 2, save_param = c(save_name = '10_spat_enrichment_score_plots_genes', base_width = 11, base_height = 6))
{ width=50% }
# spatial genes my_spatial_genes <- kmtest[1:100]$genes # do HMRF with different betas hmrf_folder = paste0(results_folder,'/','11_HMRF/') if(!file.exists(hmrf_folder)) dir.create(hmrf_folder, recursive = T) HMRF_spatial_genes = doHMRF(gobject = visium_kidney, expression_values = 'scaled', spatial_network_name = 'delaunay_network', spatial_genes = my_spatial_genes, k = 5, betas = c(0, 1, 6), output_folder = paste0(hmrf_folder, '/', 'Spatial_genes/SG_topgenes_k5_scaled')) ## view results of HMRF ## results not displayed for(i in seq(0, 5, by = 1)) { viewHMRFresults2D(gobject = visium_kidney, HMRFoutput = HMRF_spatial_genes, k = 5, betas_to_view = i, point_size = 2) }
## alternative way to view HMRF results #results = writeHMRFresults(gobject = ST_test, # HMRFoutput = HMRF_spatial_genes, # k = 5, betas_to_view = seq(0, 25, by = 5)) #ST_test = addCellMetadata(ST_test, new_metadata = results, by_column = T, column_cell_ID = 'cell_ID') ## add HMRF of interest to giotto object visium_kidney = addHMRF(gobject = visium_kidney, HMRFoutput = HMRF_spatial_genes, k = 5, betas_to_add = c(0, 2), hmrf_name = 'HMRF') ## visualize spatPlot(gobject = visium_kidney, cell_color = 'HMRF_k5_b.0', point_size = 5, save_param = c(save_name = '11_HMRF_k5_b.0'))
{ width=50% }
spatPlot(gobject = visium_kidney, cell_color = 'HMRF_k5_b.2', point_size = 5, save_param = c(save_name = '11_HMRF_k5_b.2'))
{ width=50% }
# check which annotations are available combineMetadata(visium_kidney, spat_enr_names = 'PAGE') # select annotations, reductions and expression values to view in Giotto Viewer viewer_folder = paste0(results_folder, '/', 'mouse_visium_kidney_viewer') exportGiottoViewer(gobject = visium_kidney, output_directory = viewer_folder, spat_enr_names = 'PAGE', factor_annotations = c('in_tissue', 'leiden_clus', 'MRF_k5_b.2'), numeric_annotations = c('nr_genes', 'clus_25'), dim_reductions = c('tsne', 'umap'), dim_reduction_names = c('tsne', 'umap'), expression_values = 'scaled', expression_rounding = 2, overwrite_dir = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.